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This working paper presents the first results and analysis from our evaluation of the capabilities, limitations, and
performance of tools designed to help users of machine learning models understand and manage those models.
It is focused on the use of these tools in the specific context of extending consumer credit and focuses on two
relevant consumer protection requirements: adverse action reporting and disparate impact. We will continue our
evaluation, soliciting input from experts and refining our analysis over the coming months. We expect to provide
later this year a second publication that presents an evaluation of these tools in the context of prudential model risk
management expectations. That publication will also extend the evaluation presented herein and assess holistically
the implications of our findings across adverse action reporting, disparate impact, and model risk management for
the responsible use of machine learning underwriting models and for evaluation of approaches to explaining and
managing machine learning models.
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1 INTRODUCTION

Lending decisions informed by credit underwriting models affect the lives of hundreds of millions of Americans.
Advanced prediction technology based onmachine learning techniques has the potential to increase credit access by
more accurately identifying applicants who are likely to repay loans and to reduce the number of people given loans
that they are unlikely to repay. However, the black‐box nature of machine learning models has focused attention on
model transparency as a critical threshold question – both for lenders considering whether and how to use these
models and for regulators working to adapt expectations and oversight processes to promote fair, responsible, and
inclusive use. The need to describe the behavior of black‐boxmachine‐learningmodels has spurred the development
of a range ofmodel diagnostic tools and techniques. Thesemodel diagnostic tools can help lenders answer questions
such as: what is driving the model’s prediction/behavior for a specific loan applicant; what is driving the model’s
predictions for a group of applicants, e.g., applicants of a certain race; and what is driving the overall behavior of the
model.

Approach To evaluate whether model diagnostic tools can successfully answer questions about model behavior,
it is necessary to first understand the purpose these questions serve. In the context of consumer lending, model
transparency serves to further widely shared goals regarding anti‐discrimination, consumer empowerment, and re‐
sponsible risk‐taking. For lenders, model transparency is a key instrument to help them evaluatewhether amodel can
be responsibly used in an intended application, to enable the day‐in, day‐out work of managing relevant prudential
and consumer protection risks, and to document efforts to comply with law and regulation. For consumers, model
transparency helps ensure that they receive basic information about how certain kinds of adverse credit decisions
are made and enable effective recourse. For regulators and policy‐makers, model transparency is an instrument to
enable oversight and detect shortcomings in adherence to laws and regulations. We believe that evaluating model
transparency as a means to an end is a productive structure for analysis, particularly given that there is not currently
a universal standard – or even definition – of what makes a predictive model “transparent.”
Our evaluation of model diagnostic tools is grounded in this perspective of model transparency as an instrument

to further certain goals of consumer protection and prudential risk management. In this working paper, we focus
on two consumer protection regulations that require lenders to: (1) provide loan applicants who are denied credit
or charged higher prices with the principal reasons for those decisions and (2) investigate whether their underwrit‐
ing models have disproportionately adverse effects on the basis of race or other protected characteristics, and if
so to search for alternative models. The next version of this report will convey similar information regarding the
tools’ capabilities, limitations, and performance in the context of prudential model risk management requirements.
That publication will also extend the evaluation presented herein and assess holistically the implications of our find‐
ings across all adverse action reporting, disparate impact, and model risk management for the fair, responsible, and
inclusive use of machine learning underwriting models.

Research Questions We address the following two research questions. First, we ask whether and how model
transparency is important to achieving the goals expressed in certain regulations applicable to consumer lending.
Second, in those instances where it is, we ask to what degree available feature‐based model diagnostic tools further
those goals – in particular, how well do these tools help users of machine learning models to address specific trans‐
parency challenges, to develop and manage machine learning underwriting models in compliance with applicable
requirements, and to facilitate necessary oversight by lenders and their regulators.
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Research Team To answer these research questions, FinRegLab partnered with Stanford Business School profes‐
sors Laura Blattner and Jann Spiess to conduct an empirical analysis of the ability of model diagnostic tools to help
lenders understand and manage machine learning credit underwriting models. FinRegLab is a non‐profit research
organization that was founded in 2018 based on the premise that independent, rigorous research is a primary ingre‐
dient in helping develop market norms and policy solutions that enable responsible innovation in financial services.
Professors Blattner and Spiess, experts on credit underwriting and machine learning, worked with FinRegLab to
design the empirical methodology used in this research and executed this research with assistance from a data sci‐
ence team at Stanford University and FinRegLab. This evaluation is also informed by two consultative processes: (1)
wide‐ranging input from an advisory body composed of subject matter experts from bank and non‐bank lenders, civil
society organizations, technology companies, and academic institutions and (2) interviews with lenders, advocates,
and other stakeholders to assess market practices with respect to the use of machine learning underwriting models.
Further, FinRegLab previously explored many of the motivations and concerns about the use of machine learning
underwriting models in its Market Context and Data Science Report, which provides extensive information about
many of the topics and themes presented herein (FinRegLab, 2021).

Research Participants Our analysis evaluates model diagnostic tools offered by seven technology companies –
Arthur AI, H20.ai, Fiddler AI, Relational AI, Solas AI, Stratyfy, and Zest AI – that offer various AI and machine learn‐
ing services. Working with tools being offered in the market leverages these companies’ expertise in generating
information about model behavior and their decisions about how best to serve their clients. Accordingly, the tools
evaluated in this study reflect each company’s individual judgments about a range of important technological, com‐
putational, strategic, and regulatory questions rather than those of the research team.
Our analysis also includes a set of open‐source model diagnostic tools implemented by the research team. Our

intent is not to identify the “best” or “worst” products or companies. Instead, we aim to (1) conduct an analysis
that helps all stakeholders understand better the capabilities, limitations, and performance of a variety of model
diagnostic tools in the context of existing consumer credit regulations and broader policy considerations and (2)
offer a framework that lenders, regulators, and researchers can use as a starting point for evaluating the quality and
usefulness of information about the behavior of machine learning underwriting models.

Underwriting Models To conduct our analysis, each company completed a set of model diagnostic tasks on a set
of identical credit underwriting models. The types of models used as a baseline include a logistic regression model,
a simple neural network trained on a small subset of available credit report features, an XGBoost model, and a
(complex) neural network model trained on the full set of hundreds of credit report features (all four models are
collectively the “Baseline Models”). Four of the participating companies opted to provide models that they trained
using the same data as the Baseline Models. These models expand the number of model types included in this
evaluation: a random forest classifier, an ensemble of generalized linear models, an ensemble of gradient boosted
machines, a monotonicity‐constrained XGBoost, an unconstrained XGBoost, and an unspecified proprietary model
(collectively, the “Company Models”).
Across the Baseline and Company Models, our intent was to consider types of machine learning models that

broadly correspond to those whose use lenders are considering and to establish a spectrum of simple and complex
machine learning models. However, we note that our use of the terms “simple” and “complex” in this context is
relative and captures both aspects of a model’s architecture and the number of features it uses. Our usage of the
terms “simple” and “complex” does not conform to any external standard. Given this usage of “simple” and “complex,”
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a lender who is using what they consider to be a relatively simple model may fall somewhere in the middle of the
range defined by the set of models in this research. Finally, we note that the term “complex” as used in this evaluation
is not used to describe all machine learning models or compare machine learning models to models developed with
more conventional means.
The Baseline and Company Models were developed using a panel of actual consumer credit data provided by

a leading credit bureau. The data is a representative sample of consumers from across the United States, covering
the period between 2009–2017. Our data provider required the masking of certain feature descriptions which
limited manual feature creation as well as the introduction of domain knowledge into the diagnostic process through
qualitative feature reviews.

Key Results Our research focuses on the capabilities, limitations, and performance of model diagnostic tools in the
context of (a) consumer disclosure regulations that require adverse action notices and (b) fair lending requirements
regarding disparate impact. Below, we present the following main findings:

1. Our research suggests that there are diagnostic tools which can help lenders address transparency challenges
associated with machine learning underwriting models. In particular, there are tools that can generate rele‐
vant information about the model’s behavior to help lenders comply with the two specific consumer protec‐
tion regulations considered in this report.

(a) Among the model diagnostic tools we evaluated, some tools can reliably identify features in the model
that are related to adverse credit decisions for individual loan applicants. These tools are able to identify
features of rejected applicants such that other applicants who have similar credit characteristics are also
likely to be rejected. These tools are also able to identify features that, when changed in a favorable
direction, reduce predicted default probabilities by more than randomly chosen or even closely correlated
features. Although our study could not assess how well the tools map the identified features to the
types of more holistic “reason codes” given to applicants on adverse action notices, the identification of
feature‐level information is the critical first input to the process of producing those consumer disclosures,
making our findings relevant to adverse action notices for credit decisions informed by machine learning
underwriting models.

(b) Among the model diagnostic tools we evaluated, some tools can identify features that describe a signif‐
icant part of the disparities produced by underwriting models. These tools are able to reliably identify
features that are related to the model’s disparity such that equalizing the distribution of these features
across groups sizably reduces disparities on the basis of protected characteristics. These tools are also
able to identify features that, when changed in a favorable direction, reduce predicted disparities by
more than randomly chosen or even closely correlated features. Our findings help to illustrate how cer‐
tain model diagnostic tools can support lenders’ use of traditional fair lending risk management methods
that focus on managing individual model features.

2. Our results suggest that the effective use of model diagnostic tools requires careful interpretation of their
output in the context of broader feature correlations and interdependencies. This insight expresses itself in
two ways in our findings:

(a) Tools that perform equally well in our evaluation often identify somewhat different sets of features to
describe the behavior of underwriting models even for the same regulatory purpose. In the context of
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adverse action disclosures, for instance, we find that tools that perform equally well often identify differ‐
ent drivers of an adverse credit decision for the same applicant. Similarly, we find that tools frequently
suggest somewhat different paths to acceptance for the same applicant. In the context of fair lending
analysis, we find that tools that perform equally well often identify a different set of features that drives
disparities.

(b) Attempts to change model outputs by manipulating a small set of key features is challenging when we
do not also account for correlated attributes. However, when these key features are considered together
with related or interdependent features in the model, our findings suggest that diagnostic tools describe
a substantial part of model behavior. For example, in the context of adverse action disclosures, we find
that varying a small set of features is often unable to affect the model prediction enough to overturn
an adverse credit decision. However, an approach that considers broader groups of related features can
provide a plausible path towards loan approval. In the context of fair lending analysis, we find that chang‐
ing a small set of features in isolation is not sufficient to ameliorate observed disparities. However, an
approach that considers this set of features in context with correlated or interdependent features can ex‐
press main model differences across protected class. These patterns are likely due to the fact that there
are limits to how much a small set of features can change the prediction of a model and this challenge is
especially acute for more complex models which use a larger number of features. While we are continu‐
ing our analysis of issues relating to correlated features, our results to date emphasize the importance of
careful interpretation of the output of diagnostic tools to account for the potential significance and role
of correlated features for the specific tasks the users are performing.

3. Lenders’ choices about which diagnostic tools to use and how to deploy them are important to achieving
specific consumer protection goals, particularly for more complex models.

The need to choose diagnostic tools carefully arises both because model diagnostic tools differ in their ability
to identify drivers of model predictions and because there is not a single diagnostic tool or approach that is
always the best choice across the consumer protection requirements that we analyze. We find that the choice
of diagnostic tool for a given task is highly consequential for machine learning models. For simple models
that use a relatively small set of features, almost all diagnostic tools considered in this study perform well. In
contrast, when more complex models are deployed, we find high variability in performance across different
tools for the same task. In the context of adverse action disclosures, the best tools are able to identify drivers
of an adverse credit decision that, when changed in a favorable direction, reduce predicted default probabilities
by more than randomly chosen or even closely correlated features. However, some tools we evaluate do not
perform much better than randomly chosen features. In the context of fair lending analysis, the best tools
identify features that sizably reduce disparities in our tests. However, some tools we evaluate do not perform
better than randomly chosen features in accounting for disparities on the basis of protected class.

4. While model diagnostic tools are able to identify plausible drivers of model behavior, these descriptions do
not automatically translate into finding less discriminatory alternative models.

In the context of fair lending requirements, lenders have historically relied on strategies that involve dropping
or transforming individual features that have been identified as making the largest contributions to disparities
in predictions based on race, ethnicity, or other protected characteristics. While we did not test the full spec‐
trum of potential mitigation approaches, implementation of specific company recommendations to drop a few
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individual features identified as most important in creating disparities does not significantly improve fairness
and indeed imposes a cost in the form of significantly reduced predictive performance.

While additional research is warranted, our findings to date suggest that the traditional nexus between being
able to identify key drivers of disparities and using that information for mitigation may be less applicable to
managing disparate impact risks in machine learning underwriting models. Methods that rely on more auto‐
mated approaches in their search for less discriminatory alternative models offer a notable contrast. These
approaches differ in whether and how they use protected class information in the search for and construc‐
tion of less discriminatory models. This difference reflects a range of views on the permissibility of using
protected class information in the model development process given the absence of regulatory guidance on
this point. Complex models in combination with tools that rely on some degree of automation can produce
a menu of model specifications that efficiently trade off fairness and predictive performance because they
assess a broader range of features and incorporate fairness considerations into the model’s development from
the start.

Limitations Our analysis comes with several important limitations. First, our analysis considers machine learn‐
ing models developed using readily available algorithms and tools. Our models do not represent all nuances of
production‐grade underwriting models and have not gone through nearly the same level of iterative testing and
revision. Accordingly, some of the specific metrics reported herein – including measures of model predictiveness,
disparities, and performance/fairness tradeoffs – return different values than what practitioners are accustomed to
seeing, which means that some results presented herein may not generalize well. Second, we do not consider the
universe of available model diagnostic tools but focus on tools employed by the participating companies as well as a
small set of open‐source tools. Third, the masking of feature descriptions – required by our data provider – limited
manual feature creation as well as the introduction of domain knowledge into the diagnostic process. For example,
the feature masking did not allow the translation of drivers of an adverse credit decision into the more holistic rea‐
sons that lenders typically state on adverse action notices. Fourth, our evaluation is performed on real‐world data
rather than on a highly curated, fully controlled experiment where ground truth is known. As a result, our evaluation
of diagnostic tools can only make statements about (a) the relative performance of tools and (b) the performance of
tools relative to a benchmark based on either randomly chosen features or closely correlated features in the model.
However, we cannot make absolute statements about the performance of the model diagnostic tools we evaluate.
For example, while we can discuss the importance and consistency of the identified features relative to other subsets
of features, we cannot confirm definitively that the the identified features are themost important features in actually
causing defaults or disparities. Finally, we do not consider the role of transparency in the model‐building process
itself but instead focus on post hoc feature‐based diagnostics on the resulting underwriting models. Relatedly, we
do not evaluate the intrinsic value of simple, easy‐to‐describe, or inherently interpretable models, but instead focus
on implications for post hoc analysis in the specific use cases considered in this report.

Implications for Model Management Our analysis has broader implication for the governance of machine learning
underwriting models. Our findings underscore the importance of carefully selecting the right tools and approaches
for addressing specific transparency needs of machine learning underwriting models. While encouraging, our re‐
search to date suggests that there are no universal or “one size fits all” model diagnostic tools that lenders can use to
help them explain, understand, andmanage all aspects of machine learning underwritingmodels. Lenders must make
well‐considered judgments when they select and implement such tools as well as when they act on the information
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they produce. The responsible use of model diagnostic tools adds another dimension to the many consequential de‐
cisions that lenders must make – and will be responsible for – when designing, implementing, and operatingmachine
learning underwriting models. These governance decisions are inescapably human in nature and as such cannot be
assessed in a study of this kind.
As the use of machine learning underwriting models continues to expand, there is much to learn about benefits

and risks related to the kinds of model diagnostic tools evaluated herein as well as the underlying types of machine
learningmodels being used for underwriting . This process will likely be aided by further research and by clarification,
and in some cases reconsideration, of the substantive rules that apply to both underwriting models and machine
learning underwriting models and to the processes used by firms and their regulators to monitor them. For example,
key concepts like model transparency may be translated to specific standards or definitions or even take on new
dimensions, such that it is an affirmative object of regulation and not merely a necessary instrument.

Implications for Model Transparency Our analysis also has broader implications for the debate about the trans‐
parency of machine learning models in credit underwriting. First, whether specific notions of transparency and
particular types of model diagnostic tools are appropriate depends on the context and goal. Information about a
model that is appropriate to respond to one regulatory requirement may not necessarily translate into an appropri‐
ate and useful description for another. Second, model diagnostic tools face challenges when the goal is to describe
actionable relationships between applicant actions and the loan approval decision. Obtaining such actionable expla‐
nations of model behavior is particularly challenging in the presence of a large number of interrelated and potentially
relevant features. However, we believe that this challenge is not specific to complex machine learning models, but
instead an inherent limitation of any model that operates in a complex world. While simple underwriting models
allow for a simple description of their mechanical behavior, even for these models understanding how changes in
applicant behavior affect credit approval and default requires a (causal) understanding of how features change to‐
gether. This type of understanding cannot be learned from the data alone but requires domain knowledge and an
understanding what causes a consumer to default on a loan. At the same time, our analysis suggests that the careful
curation and construction of model features plays a central role in describing model behavior.

Contribution This report is the only publicly available, independent evaluation of commercial and open‐source
model diagnostic tools embedded in the specific context of consumer lending regulation of which we are aware. In
the near term, we hope that this report can contribute to the reconsideration of current expectations and practices
and the articulation of policy and market practices regarding the development, implementation, and monitoring of
machine learning technology in consumer lending. Our research offers a framework for evaluating the quality and
usability of information produced about machine learning models’ behavior in cases where model transparency is an
important threshold question for fair and responsible use of such models. We hope that our evaluation provides a
compelling case study for those shaping market practice and policy regarding the fair, responsible, and inclusive use
ofmachine learningmodels in extending consumer credit and other financial services applications. We also hope that
it helps advance academic and policy debates about how to foster the responsible use of machine learning models
in medicine, criminal justice, employment, and other sectors, where these prediction tools increasingly affect highly
consequential decisions.
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2 BACKGROUND

2.1 EXPLAINABILITY ANDMACHINE LEARNING IN CONSUMER LENDING

Many lenders have hesitated to adopt machine learning models – or adopted them in forms that limit much of their
value – due to uncertainty about an important threshold question: Given that machine learning models can be more
complex and less transparent than the models they would replace, can lenders determine whether particular models
can be trusted and comply with applicable regulatory requirements?
Machine learning models do not inherently need to be transparent to make accurate predictions. To date U.S. law

and regulation have not generally required users of machine learning models to meet defined thresholds for model
transparency. But without appropriate transparency, internal and external model stakeholders – model developers,
model users, risk managers, regulators, and investors – cannot be confident that a model is fit for purposes or can
be or is being used responsibly and fairly. Emerging initiatives from U.S. and international policymakers,1, as well as
in academic discourse across several disciplines,2 have begun to articulate frameworks that identify transparency as
a critical component of establishing when AI or ML systems can be trusted.
Highly regulated sectors like financial services have pre‐existing legal and regulatory frameworks that force po‐

tential users of machine learning to resolve questions about model transparency earlier and more holistically than
elsewhere. For example, implementing machine learning in the context of extending consumers credit brings into
play among the most exacting requirements focused on promoting responsible risk‐taking and providing consumers
broad, non‐discriminatory access. Efforts to ensure that emerging uses of technology satisfy these requirements
gives technologies that gain acceptance in consumer credit and financial services disproportionate potential to shape
how other sectors answer the same questions.
Given these regulatory frameworks, concerns about model transparency shape lenders’ decisions at every stage

of the process of developing, implementing, and managing machine learning underwriting models. Model develop‐
ers may in effect work backwards from the transparency requirements of their use case – by designing and planning
their modeling approach based on the level and type of transparency required. In practice, the developer of an
underwriting model needs to be able to establish that each relationship in the model has an intuitive, defensible
relationship to an applicant’s likelihood of default.3. Confronted with the need for model transparency, developers
might build inherently interpretable models – ones that promise to be explained and understood without additional
analysis. Alternatively, they might build explainable models – ones that use more complex or black box predictive
models alongside supplemental models, analyses, and techniques designed to improve the predictive model’s trans‐
parency. Once they have made that decision, model developers have to decide how much complexity in the model
that they can or wish to manage.
Lenders’ efforts to implement fair, responsible, and inclusive machine learning underwriting models have been

shaped by the technical demands of identifying what drives the predictions of machine learning models. These
1Emerging approaches to regulating the use of AI in other jurisdictions, such as the EU, have recognized the sensitivity of credit scoring and

underwriting among AI applications and called for them to be treated as “high‐risk” for risk management purposes. See European Commission,
Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intel‐
ligence Act) and amending certain Union legislative acts, 2021). Similarly, the National Institute for Standards and Technology has proposed a
framework for AI risk management, and theMonetary Authority of Singapore released a series of white papers detailing approaches to identifying
and measuring Fairness, Ethics, Accountability and Transparency principles in AI systems to guide responsible use of AI by regulated entities. See
National Institute for Standards and Technology, et al., AI Risk Management Framework: Initial Draft; Monetary Authority of Singapore, FEAT
Principles Assessment Methodology (2022).

2See generally Dwork et al. (2012); Barocas et al. (2017); Hutchinson and Mitchell (2019); Rodolfa et al. (2021).
3SeeOffice of the Comptroller of the Currency, Bulletin 1997‐24: Credit ScoringModels: Examination Guidance (May 20, 1997); Evans (2017)
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demands can be especially challenging where the machine learning algorithms develop and rely on relationships
that are inherently complex, non‐intuitive, difficult to assess, large in number, or dependent on a large number of
input features or relationships. The ability of machine learning models to use non‐monotonic4 and/or non‐linear
features5 poses a particular challenge for lenders that must be responsive to the transparency needs of specific laws
and regulations that apply to the extension of consumer credit. Some may opt to impose monotonicity or linearity
constraints on the learning algorithm to make it easier to describe the behavior of the resulting machine learning
models. Others may rely on an array of developments in the data science of explainability that have led to the
emergence of varied model diagnostic tools designed to support users of machine learning models.
Firms, policymakers, advocates, and other stakeholders are invested in understanding to what degree these

model diagnostic tools can help foster fair, responsible, and inclusive use of AI and machine learning across all
sectors. In consumer credit and other use cases, there is much work to be done to assess the capabilities and per‐
formance of these explainability tools, techniques, and analyses. This work involves not only assessing the technical
reliability of the explanatory information produced by emerging diagnostic tools, but more importantly assessing the
usability of such information in specific contexts. This includes understanding and considering the needs of specific
stakeholders when developing context‐appropriate and usable explanations of a model’s behavior, as explainability
is a distinct psychological process that depends on the user of the explanation (Broniatowski et al., 2021). Accurate
information about a model’s behavior may not be sufficient if it does not also enable actions contemplated by public
policy, such as the mitigation of discrimination risks. To achieve this, the explanatory information about machine
learning models must be usable to support and inform strategic, governance, and risk management decisions involv‐
ing diverse users of model explanations, each of whom need to be able to understand and act on that information
in different ways.
This evaluation is designed to address this gap in the context of consumer lending. Our research evaluates

whether and in what circumstances diagnostic tools using post hoc explainability methods can support lenders’
compliance with a set of specific rules and regulations applicable to consumer credit that in one form or another
all depend on the ability to explain underwriting models. Our contribution to understanding the capabilities and
performance of these explainability tools, techniques, and analyses in the context of consumer credit takes two
forms: articulation of a structured framework for assessing when we can trust information about machine learning
underwriting models and applying that framework in a case study that uses real lending data.

2.2 RELATED LITERATURE

Our approach and findings directly relate to current debates in the academic and policy literature on the fair, inclu‐
sive, and responsible deployment of machine learning models. We hope that our findings can add to the empirical
evidence that helps move these debates forward.
First, we relate to work on the importance and challenges of explainability, interpretability, and transparency of

complex machine learning models in critical applications (e.g. Lundberg and Lee, 2017; Slack et al., 2019). Our work
aims to add an economic notion of model transparency in the context of specific use cases to existing mathematical
notions of complexity and explainability. Specifically, we argue that when used in critical applications, model de‐

4Adding salt to a savory dish presents an intuitive example of a non‐monotonic relationship. A small amount of salt will generally make the
dish taste better. However, after a certain point, adding salt will not improve the taste of the dish and, in fact, will make the dish taste worse. This
is an example of a non‐monotonic relationship, as the relationship is positive in some cases and negative in others, which means the relationship
is not one‐directional.

5A non‐linear relationship is one in which increases or decreases in an input feature do not always produce proportionally consistent changes
in the target or output feature.

Machine Learning Explainability & Fairness: Insights from Consumer Lending 13



scriptions should be related to specific policy goals and be interpreted in their specific context. We document that
reasonable model descriptions may disagree (related to recent work about disagreement by Krishna et al., 2022).
Second, we speak to a debate in computer science, economics, and law on different ways of restricting models
to ensure their fairness and avoid discrimination (Barocas and Selbst, 2016). Our work adds to a growing list of
theoretical, simulation‐based, legal, and empirical findings that discuss the limits of input restrictions and consider
alternatives (Kleinberg et al., 2018a; Gillis and Spiess, 2019; Gillis, 2022). Specifically, we show the promise of an
approach that directly optimizes for specific policy targets, such as lowering disparities across groups. Furthermore,
we show that input restrictions can be costly for performance with limited gain in reducing disparities. Third, while
not the main focus of our study, we also contribute empirical evidence to discussions around different notions of
disparity and fairness metrics (Hellman, 2020). Specifically, we show that different natural measures of disparities
lead to different rank‐orderings between models, and thus confirm existing theoretical and empirical findings that
suggest that different notions of fairness cannot all be fulfilled at the same time but represent inherent trade‐offs
(Kleinberg et al., 2016; Chouldechova, 2017). At the same time, in our study there are also groups of (typically more
complex) models that perform well across measures and dominate other (typically simple) models, suggesting that
the choice of measures matters, as does the choice of model class, and a combination of model and optimization
can generally improve properties across the board (related e.g. to Coston et al., 2021). Finally, we also relate to a
discussion about trade‐offs between model complexity, performance, and fairness in the case of consumer finance
(Fuster et al., 2022; Bartlett et al., 2022). In our study, notwithstanding the limitations in the development of our un‐
derwriting models noted in Section 1 and Section 3.4, the more complex models in this study generally outperform
simpler models across measures of both disparity and model fit criteria, confirming the general potential of modern
machine learning methods. At the same time, we observe fairness–performance trade‐offs within complex models,
tracing out a Pareto frontier that joint optimization can achieve.
While our evaluation studies the ability of feature‐based model diagnostic tools to respond to specific policy

and regulatory needs, we note that there are two other aspects of the transparency of automated machine learning
systems that hold promise for their safe and fair use, which we do not deal with in depth in our report. First, we con‐
sider descriptions of models themselves, and not of the algorithms that produced these models. But one advantage
of increasingly automated model‐building pipelines is that they can often be described more completely and more
accurately than the hand‐curation of features and models by human model‐builders, thus offering an opportunity
for procedural scrutiny and transparency (e.g. Kleinberg et al., 2018b). Second, even complex models can be evalu‐
ated by simulating model behavior across hypothetical distributions of applicants or validating on actual segments
of particular interest, thus potentially making their performance and critical properties available to regulators even
before deployment. This form of “discrimination stress testing” (Gillis and Spiess, 2019) offers an alternative way
towards transparency that holds promise even as models become more complex.
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3 RESEARCH DESIGN &METHODOLOGY

3.1 RESEARCH QUESTIONS

In this report, (1) we consider when and howmodel transparency is needed to help lenders serve the goals expressed
in certain regulations applicable to consumer lending, and, in those instances where it is, (2) we evaluate the degree
to which available model diagnostic tools further those goals – in particular, we evaluate how well those tools help
users of machine learning models overcome specific transparency challenges to enable appropriate oversight. We
view model transparency as a critical means to an end, rather than an end in itself, where the goal is to enable fair
and responsible use of machine learning models and to document compliance with applicable laws and regulations.
We view this as a sensible and productive approach given the lack of a widely accepted definition of model trans‐
parency or explainability and the absence of a universal standard of what makes a model sufficiently transparent or
explainable.
The process of defining our research questions beganwith extensive outreach to understandwhat issues lenders,

technology companies, policymakers, consumer advocates, and researchers see as critical to promoting fair, respon‐
sible, and inclusive use of machine learning underwriting models in consumer credit. Our contribution lies in provid‐
ing a rigorous and independent assessment of the threshold questions that all stakeholders have identified as critical
to defining responsible use of machine learning underwriting models.

3.2 EVALUATION FRAMEWORK

This section introduces our empirical evaluation framework. Our evaluation is based on the idea that model trans‐
parency is best viewed as a necessary means to an end rather than as an end in and of itself. This report therefore
focuses on how model transparency can further core policy goals of consumer protection in the United States,
namely, anti‐discrimination, consumer empowerment, and equitable access to credit. We offer a framework that
lenders, regulators, and researchers can use as a starting point for evaluating whether and in what circumstances
information about how machine learning credit underwriting models work can be used to manage models in accor‐
dance with applicable requirements and in the context of specific regulatory compliance tasks. While the existing
literature has proposed desirable criteria for explanations produced by diagnostic tools, the strength of our approach
is to highlight which of these technical properties are desirable when viewed through the lens of certain legal and
regulatory requirements that apply to consumer credit.6.
We evaluate model diagnostic tools with respect to the following properties: fidelity, consistency and usability.

3.2.1 FIDELITY

We define fidelity as the ability to reliably identify features that are relevant to a model’s prediction. Intuitively,
fidelity asks how well an explanation approximates the prediction of the black box model. If the diagnostic tool is
not able to reflect the mechanics in the model, the explanation it produces will not be an answer with high fidelity.

6Further context on the relevant legal and regulatory background for adverse action reporting and fair lending is included below in Section 4.1
and Section 5.1
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3.2.2 CONSISTENCY

We define consistency as the degree to which different tools identify the same drivers either for the same model
or across models. Consistency is necessary to inform high‐quality, good‐faith model management decisions and
also reduces the risk that a lender can pick and choose the desired explanation to hide potentially unwanted or
unjustifiable model behavior. We investigate two notions of consistency:

⇒ Consistency across diagnostic tools. This notion of consistency assesses whether the same explanation is
produced by different diagnostic tools when applied to underwriting models developed with and applied to
the same data. This type of consistency helps ensure that use of different approaches to generating infor‐
mation about the model’s operation or specific decisions leads to similar answers. To the extent that there is
lack of consistency, this evaluation asks if this is driven by the use of different approaches to generating the
explanation or if it reflects the fact that differing explanations reflect variables that are highly correlated and
playing a similar role in the model.7

⇒ Consistency across models. This portion of the framework asks how similar a given explanation is across
distinct models that have been trained on the same task and data. While we hope that drivers are consistent
for models that have similar predictions, consistency is not necessarily a desirable property across models that
behave differently, as we hope that model diagnostic tools are able to identify their relevant differences.

Further, we recognize a potential third form of consistency relevant to lending: consistency across similarly sit‐
uated applicants.8 Such applicants have similar credit characteristics and would receive nearly identical scores, but
the specific inquiry to identify drivers of model behavior relevant to adverse action notices and disparate impact
require different inquiries as detailed in subsequent sections.

3.2.3 USABILITY

Wedefine usability as the ability to identify information that helps the recipient act inways intended by the particular
regulation at hand. For example, information about options for reducing disparities in the model can help lenders
manage particular compliance risks in accordance with the purposes of fair lending requirements. In the context of
adverse action notices, this could direct attention to whether the tools can produce information that is advisory,
rather than merely descriptive, so that an individual recipient of an adverse credit decision might be empowered to
improve their prospects of approval in the future. Unlike fidelity and consistency, the exact definition of usability
depends on the specific policy or regulatory goals in question.

3.3 DATA

Our work is based on data from one of the three main nationwide credit reporting agencies for a representative
sample of 50 million individuals from across the US, covering the period between 2009–2017 (semiannually – May
and November). We build prediction models for credit card default and select a random sample of individuals who
applied for a new credit card between November 2011 andMay 2012. We identify credit card applications based on

7Certain portions of this analysis will be presented at a later date.
8Someof the analysis presented herein uses this aspect of consistency to validate the quality ofmodel explanations fromdifferent perspectives.

For example, our fidelity tests in the section on adverse action notices uses a nearest neighbor test to identify similarly situated applicants to
evaluate fidelity of information provided by the diagnostic tools in the context of adverse action reporting (See subsubsection 4.4.1).
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a credit card inquiry in the data. We identify an opening based onwhether an inquiry is followed by a new credit card
account up to six months after the inquiry. Since we do not have tradeline‐level data we cannot match an inquiry at
a particular credit card issuer to an account opening with that same issuer.

3.3.1 DATA DESCRIPTION

Our credit report data is not at the tradeline level but instead provides information aggregated by account type. For
example, we have information on the payment histories for all of a consumers’ credit card accounts combined but
this information is not broken out separately for each credit card account. The following information is available in
our data:

⇒ Derogatory public records;

⇒ Historical payment delinquencies (at any point in
time);

⇒ Recent payment delinquencies (1‐2 years);

⇒ Evolution of debt balance;

⇒ Credit availability/utilization;

⇒ File thickness (length of history/number of ac‐
counts);

⇒ Credit inquiries broken down by type of account
type and recency of inquiry;

⇒ Mortgage‐related features; and

⇒ Specific credit card features (limits, payment pat‐
terns, utilization, balances).

Several features express changes in these characteristics over time. For example, we might have features ex‐
pressing how the monthly credit card balances have been changing for the past two years.
We did not use credit score, geography, or income estimates in building the Baseline Models.
In addition to these baseline features, we created outlier indicators and missing value categorical features, yield‐

ing a total of 652 features. We replaced the different missing value codes (MVC) in the original data by a single
value (−1 or 0). We chose a missing value code of zero for balances and counts where missingness naturally im‐
plies a value of zero. We created an indicator for outlier observations for numeric features with thicker tails (more
than 5% above two standard deviations from the mean). The feature masking still allowed us to identify a family
of features consisting of the base feature and its associated outlier and missing value categorical feature. Finally,
we transformed certain numeric features to ln(1 + feature) to account for their skewness. No additional feature
selection or pre‐processing was performed.
Our data provider required that certain features be masked in the research. For these features, no feature name

or descriptionwas provided to the participating companies. We did provide background information on each feature
(masked and unmasked) to the participating companies. This background information included the type of feature
(e.g. ratio, balance), whether we applied a transformation (e.g. taking the logarithm), basic summary statistics, the
time horizon of mutability, and the direction of possible change (e.g. positive change only).
All features are obtained from the semester immediately before the application such that the features reflect

credit reports before the respective application and inquiry take place. Our outcome of interest (label for supervised
learning) is an indicator of severe delinquency (a MOP rating of 4 or 5) for any credit card, any bankruptcy, or any
credit card charge‐off within 24 months after the opening of the credit card of reference (thus until May 2014, in
our case). Note that since we do not have tradeline data available, our labels refer to “any credit card” default as
opposed to default on the particular credit card opened up to 24 months ago. This limitation of our data might lead

Machine Learning Explainability & Fairness: Insights from Consumer Lending 17



us to observe relatively high default rates when compared to default rates observed in tradeline data. That said,
all models in our analysis were trained using the same default outcome. For that reason, our results should not be
confounded by this property of our data.
Given resource constraints, we split our sample into a training and a test set for the estimation of all models.

The total sample size is just over 600,000 evenly split between training data and testing data. The equal split is
motivated by the fact that we conduct our evaluation analysis on the test data set and require a sufficient sample
size to have confidence in the results of our evaluation. Table 1 provides statistics on the default labels in both
datasets. The performance of models on an out‐of‐time sample is part of our supplemental report on prudential risk
considerations.

3.3.2 PROTECTED CLASS DATA

The protected class indicator considered in this research consists of a flag that divides applicants into two groups
based on race/ethnicity. The majority group (or non‐minority group) consists of non‐Hispanic White applicants. The
minority group is defined as either Black or Hispanics and excludes the category Asian. We infer race/ethnicity status
using a Bayesian Improved Surname Geocoding (BISG) approach, which uses name and geographic information to
predict race and ethnicity (see Appendix D for details).

Reject Inference Unobserved default outcomes among rejected applicants present a key challenge in building credit
scoring models. This problem is variously referred to as selective labels (in computer science), unobserved potential
outcomes (in applied microeconomics), or reject inference (in the credit scoring industry). To study the effect of
reject inference choices on model explainability, we designed several additional tests. The results from this analysis
will be presented in the next version of this report.

3.4 MODEL DEVELOPMENT

We consider two types of credit underwriting models in this study. The first set of models (each a “Baseline Model”
or collectively, the “Baseline Models”) were built by the research team. A second set of models were built by the
participating companies on an identical training data set (each a “Company Model” or collectively, the “Company
Models”). The development process for the Baseline Models and the Company Models was less intensive than
lenders typically conduct. For example, we did not go through iterative fair lending compliance reviews to mitigate
bias in Baseline Models, in part because that kind of analysis is part of the evaluation (see Section 5.4). We describe
each set of models in turn.

3.4.1 BASELINEMODELS

To support evaluation of the identified proprietary and open‐source diagnostic tools, the research team developed
machine learning models using commonly available algorithms and software tools. Throughout this process, we
consulted with an array of stakeholders with expertise in credit modelling and consumer lending to help ensure that
– while ‘out‐of‐the‐box’ – our models still approximate industry practice wherever feasible given available data and
resources. Executives at established bank and non‐bank lenders reviewed and provided feedback on qualitative
and statistical information we provided about our models. We believe that the Baseline Models fit the purpose
of this evaluation – that is, they sufficiently emulate industry practice to support evaluation of the capabilities,
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limitations, and performance of the kinds of model diagnostic tools offered by the participating companies. One
area of divergence between our models and production‐grade underwriting models – and the sense in which our
models are “out‐of‐the‐box” – is the time spent on manual feature pre‐processing and selection.
We fit four types of models to the training data: two “simple” models and two “complex” models. Our aim was to

set up within this set of models comparisons between simple and complex machine learning models based loosely
on differences in model architecture and the number of features used in the model. However, our use of the terms
”simple” and ”complex” is relative and not meant to conform to any external standard, as we are not aware of any one
dominant usage of these terms in the context of debates about responsible machine learning, model transparency,
and / or consumer lending. The term ”complex” in particular is not used to describe all machine learning models or
compare machine learning models to models developed with more conventional means. Accordingly, a lender that
is using what it considers to be a relatively simple model may fall somewhere in the middle of the range defined by
our four models.
The following four algorithms were chosen to create a set of underwriting models that would be used to evaluate

diagnostic tools from the participating research companies (each a “Baseline Model” or collectively, the “Baseline
Models”):

⇒ Logistic Regression

⇒ Simple Neural Network

⇒ XGBoost (Classifier)

⇒ Neural Network (NN)

Complex models The complex models are built on the full set of 652 features that we obtained after the feature
pre‐processing steps described in Section 3.3. Hyperparameter tuning for the complex models is based on a random
search algorithm over a predetermined search space, together with the use of cross validation for performance
evaluation and choice of best model from the ones searched. Based on the library documentation and available
materials on consumer credit risk prediction models, we gathered a list of tunable hyperparameters and defined
initial search ranges. After conducting the random search over this initial search space and analyzing the ranking of
searched combinations by the respective performance score, we observedwhether the top performing combinations
(average score over validation sets) included values at the margin of the different hyperparameter search ranges. In
such cases, we extend the respective search range in the appropriate direction. Table B.1 in the appendix reports
the search space and chosen hyperparameters for each model. Across all machine learning models, we used 100
iterations in the random search and used 5‐fold cross‐validation. Our Python implementation relies primarily on the
scikit-learn library.

Simple models Both sets of simple models (logit model and simple neural network) use a subset of features which
are selected using LASSO, a common feature selection method. LASSO identified 44 out of the full set of 652
features, which are then used in the training of the logistic regression and simple neural net models. Neither of the
type of simple models uses a search space for tuning the hyperparameters, and the parameters used are based on a
manual trial‐and‐error method. In particular, the simple neural network model, built only on 44 features, uses only
2 hidden layers with 8 nodes (compared to 2 hidden layers and 30 nodes for the complex neural network model).
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It is important to note that our logit model is not meant to approximate incumbent underwriting models prior to
adoption of machine learning and is likely more complex than those models. But it does share with those incumbent
models a high degree of transparency in the sense that the model’s coefficients can in principle be directly inspected.

3.4.2 COMPANYMODELS

Four out of the seven participating research companies opted to provide one or more custom models (each a “Com‐
pany Model” or collectively, the “Company Models”). These custom models were trained on the identical data set to
the Baseline Models. We provided the full set of 652 features to all companies (see Section 3.3 for a broad descrip‐
tion of these features). None of the companies chose to conduct reject inference, that is, they dropped applicants
with missing default labels from the training data. Each of these companies made its own decisions about what
type of model to deliver and how to balance various concerns, such as level of the complexity, transparency, and
predictive accuracy appropriate for a prediction model for use in the context of extending consumer credit. None
of the companies used reject inference in their model building process. Below we provide a brief description of the
types of models represented in the set of Company Models.

Unspecified Proprietary Model One company chose to select the 20 most important features and build a model
using a proprietary modeling approach designed to provide greater intepretability and transparency. The missing
value indicators as well the outliers indicator variables were disregarded. All the categorical variables underwent
frequency encoding based on James‐Stein methodology. The variables that had more than 80% of missing values
were dropped. Multicollinearity analysis was conducted and the variables that hadmore than 98% correlation among
each other were omitted.

Random Forest Classifier One company submitted a random forest classifier. A grid search was performed to tune
for the best hyperparameters. No reject inference was conducted.

Ensemble of Generalized Linear Models One company submitted a model that is a stacked ensemble of four gen‐
eralized linear models. This model was trained on the original features only.

Ensemble of Gradient Boosted Machines One company submitted a stacked ensemble of gradient boosting ma‐
chines trained on the original features, manually engineered features, and automatically engineered features. The
models used 1306 features, including 344 from the set of original and manually created features and 962 automati‐
cally generated features. The final stacked ensemble included five gradient boosters – four xgboost models and one
lightgbm model.

Monotonicity‐Constrained XGBoost Model One company provided a monotonicity‐constrained XGBoost model
that contained 192 features. The company detected and replaced 260 features that were missing values with NaN.
260 binary flags to indicate a missing value corresponding to those features were added to aid with interpretabil‐
ity. From this larger set, 255 duplicate features were detected and removed. 73 highly correlated features were
also detected and removed. A greedy feature selection algorithm identified and removed 392 features that con‐
tributed little to predictive performance of the model. Monotonicity constraints were automatically applied to 187
non‐categorical features based on analysis of SHAP feature importances. Bayesian hyperparameter search was
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conducted based on a validation dataset and XGBoost hyperparameters that maximized predictive performance as
measured by AUC on the validation dataset were selected.

XGBoost model One company submitted an XGBoost model with 500 input variables after removal of 152 dupli‐
cate features. Bayesian hyperparameter search was conducted based on a validation dataset and XGBoost hyper‐
parameters that maximized predictive performance as measured by AUC on the validation dataset were selected.
No further tuning or preprocessing was conducted.

3.4.3 MODEL PERFORMANCE

Table 2 shows model performance on the test set for the Baseline and Company Models. The performance of the
Company Models is similar to our complex Baseline Models. Complex models perform better than simple models.
We show the following performance metrics.
A common way of quantifying the magnitude of classification errors is in terms of the receiver operating charac‐

teristic (ROC) curve. The ROC curve plots the true positive rate against the false positive rate at each credit score
threshold. A standard summary measure of classification accuracy is the area under the ROC curve (AUC). An AUC
value of 0.5 corresponds to classification no better than a random pick whereas an AUC value of 1 corresponds to
perfect classification.
Log Loss is a common evaluation metric that determines how close the predicted probabilities are to the true

outcomes. Mathematically, Log Loss is −1 times the logarithm of the likelihood function. Intuitively, the likelihood
function answers the question of how likely a predictionmodel thought the observed set of true outcomes is. Smaller
values correspond to more predictive accuracy. Unlike the AUC metric, Log Loss takes into consideration not just
whether the model predicted the wrong outcome (e.g. a default when the applicant in fact did not default) but also
by how much the prediction was off.
Mean Squared Error (MSE) computes the difference between the model’s predictions and the true outcome.

The MSE metric is obtained by first squaring these differences and then reporting the average across the test set.
Smaller values correspond to more predictive accuracy. Unlike the AUC metric, MSE takes into consideration not
just whether the model predicted the wrong outcome (e.g. a default when the applicant in fact did not default) but
also by how much the prediction was off.
Similar to the AUC metric, the Gini coefficient is used to evaluate the performance of a prediction model for a

binary outcome, that is, default or no default. The value of the coefficient ranges between 0 and 1, with higher
numbers corresponding to better performance.
The Kolmogorov‐Smirnov (KS) metric is also used to evaluate the performance of a prediction model for a binary

outcome, that is, default or no default. The KS metric measures the degree of separation between two statistical
distributions. The KS statistic is 1 if the prediction model perfectly separates loan applicants into true default and
true non‐defaults (i.e. it perfectly predicts outcomes). In contrast, the KS statistic is 0 if the model made a random
guess. Higher values of the KS statistic therefore correspond to better performance.
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Table 1: SUMMARY STATISTICS: DEFAULT LABELS

# Observations # Default # Default Missing Default Rate

Training Data 312,715 21,746 142,033 14.60%
Test Data 337,737 34,537 108,015 15.03%

Note: This table summarizes the sample training and test set sizes and default label counts. Default refers to credit card default
up to 24 months after opening a new credit card account. Default Missing are driven by rejected applicants in the data.

Table 2: MODEL PERFORMANCE

Company Models ROC AUC Log loss MSE KS Stat Gini coefficient

Alpha model 0.866 0.298 0.093 0.585 0.619
Beta model 0.871 0.294 0.091 0.591 0.623
Gamma model 0.870 0.295 0.092 0.590 0.625
Delta model 0.868 0.297 0.092 0.586 0.626
Epsilon model 0.844 0.317 0.098 0.554 0.549
Zeta model 0.863 0.302 0.094 0.578 0.591
Simple models ROC AUC Log loss MSE KS Stat Gini coefficient

Logit 0.820 0.335 0.105 0.516 0.554
Simple NN 0.802 0.340 0.105 0.523 0.530
Complex models ROC AUC Log loss MSE KS Stat Gini coefficient

XGBoost 0.871 0.294 0.091 0.591 0.626
Neural net 0.860 0.317 0.097 0.574 0.690

Note: This table shows predictive performance metrics for the underwriting models in this study. The top panel shows models
built by participating companies. The middle panel shows the two simple Baseline Models and the bottom panel the two
complex Baseline Models.

3.5 EVALUATION PARTICIPANTS

This evaluation assesses the performance and capabilities of a set of proprietary and open‐source model diagnostic
tools. The intent is not to identifywinners or losers among those tools, but rather to understand inmore nuanced and
context‐specificwayswhether and how currently available explainability techniques can support fair and responsible
use of machine learning underwriting models.
All of the techniques and tools in this evaluation are plausible for use in conjunction with models that evaluate

applications for consumer credit, in part because they can meet the speed requirements of desktop underwriting
and digital lending.
The proprietary tools in this evaluation come from a set of technology companies that differ in a number of

respects: business models and strategies; depth of experience in financial services and consumer credit; corporate
development and resources; and client bases. Given these differences, the capabilities of the tools vary, which in
some cases meant that individual companies opted not to participate in some parts of the evaluation. In many cases,
specific tasks in the evaluation required the companies to do something or produce information in ways that varied
from their normal interactions with clients, and several companies participated in aspects of the evaluation that
are outside the capabilities currently offered to clients. Further, the companies vary in how they engage with their
clients. Some provide software tools that enable model development and model monitoring with little interaction
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with clients beyond training and technical support. Others offer clients a full range of advisory services to support
use of their software tools.
Considered together, these factors mean that the individual tools in this evaluation reflect a variety of specific

design choices made to solve technological, operational, and strategic challenges relevant to each company’s clients.
By working with companies that are actively offering the model diagnostic tools in this study, the research team
leverages the expertise and resources that each company has brought to bear on these challenges. However, this
may mean the tools reflect very different judgments with respect to aspects of this evaluation, given uncertainty
about market and regulatory factors. For instance, as discussed more below in Section 5.1, the use of protected
class information in model development processes is one area where the companies’ judgments about regulatory
interpretation and strategy result in the creation of tools that reflect different approaches.
The technology companies represented in the evaluation do not represent every known approach to explain‐

ing and managing machine learning models, but we believe that collectively they reflect many of the dominant
approaches and meaningful variations in methods for producing model explanations that are commercially available.
The proprietary tools in this evaluation have been provided by the following companies:9

⇒ ArthurAI’s platform measures and improves machine learning models to help data scientists, product own‐
ers, and business leaders accelerate model operations and optimize for accuracy, explainability, and fairness.
Arthur’s research‐led approach supports a range of capabilities in computer vision, natural language processing,
bias mitigation, and other critical areas.

⇒ FiddlerAI offers an enterprise solution for teams to monitor, explain, analyze, and improve their models and
build trust into AI. The unified environment provides a common language, centralized controls, and actionable
insights to operationalize machine learning/AI with trust. Fiddler integrates deep explainable AI and analytics
to help clients grow into advanced capabilities over time and build a framework for responsible AI practices.
Fiddler’s platform can be used across training and production models to accelerate AI time‐to‐value and scale
and increase revenue by connecting predictions to business context.

⇒ H2O.ai partners with organizations across sectors and around theworld, accelerating capabilities in automated
machine learning (autoML), time series forecasting, and responsible AI. Its platform, the H2O.ai Cloud, enables
businesses, government entities, nonprofits and academic institutions to make, operate and innovate with AI.

⇒ RelationalAI (RAI) provides the first knowledge graph built for developing intelligent data apps. RAI stores
graphs and logic together as executable models. This knowledge‐centric approach connects domain expertise
to systems for advanced analytics and composite AI from fraud prevention and recommendations to network
optimization. As a cloud‐native system, RAI fits into existing architectures to leverage any data type and
accelerate data‐centric development.

⇒ SolasAI provides software that affords modelers, compliance stakeholders, and executives the ability to min‐
imize discrimination in their predictive decisioning models without hurting their business. SolasAI builds on
the thought leadership and expertise of BLDS, LLC – an industry‐leading consultancy with decades of expe‐
rience advising on the topic of algorithmic fairness across areas such as banking, insurance, healthcare, and
employment. In recent years, BLDS has focused on the development and implementation of techniques that
provide a clearer understanding of AI decision‐making and evaluate the fairness of such models which are now
available through the SolasAI application.

9These extracts were prepared by each company participating in this evaluation.
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⇒ Stratyfy is an ethical AI company that offers predictive analytics and decision optimization software for credit
and risk teams, helping lenders providemore peoplewith access to fair and transparent credit. Stratyfy’s unique
solutions provide the level of understanding and control that regulated institutions require to proactively iden‐
tify andmitigate bias andmake better credit decisions. With Stratyfy’s solutions, users can seamlessly combine
the precision of data and the wisdom of domain expertise, optimizing risk‐based decisions without introducing
regulatory or operational risk.

⇒ Zest AI’s software helps lenders of all sizes make more fair and accurate credit underwriting decisions. Zest’s
Model Management System allows lenders to build, adopt, and operate models that use hundreds of FCRA‐
compliant attributes and advanced machine learning techniques to improve the accuracy of risk assessment
and to successfully underwrite borrowers from under‐represented groups. Since 2009, Zest has provided
credit scores for hundreds of millions of prospective borrowers worldwide, including those with little to no
credit history.

Anonymity To protect the anonymity of these companies and the confidentiality of their proprietary methodolo‐
gies, results for individual tests are presented herein with masked identifiers. The identifiers are varied across dif‐
ferent sections of the report. Finally, we have embedded in the discussion of results an overview of methodologies
used to produce information responsive to the evaluation protocol. These descriptions will help readers understand
the range of methodologies used by the companies in this study but will not identify which company or companies
have used particular approaches.

3.6 OPEN‐SOURCE TOOLS

The research team has also included its own implementation of open‐source tools to present a benchmark for the
performance of the responses provided by the participating companies, many of which build on open‐source tech‐
niques in developing their proprietary offerings. The open‐source techniques used in various parts of this evaluation
include:10

⇒ LIME: Local InterpretableModel‐Agnostic Explanations (LIME) is an explainability technique for complex mod‐
els that uses local linear surrogate models around a particular data point to approximate the complex model’s
output.11 The resulting local surrogate models are used to both explain the model’s behavior around individual
data points and to quantify feature importance for the overall model. This surrogate model does not altogether
explain how the model arrived at the result, but focuses on instead how slight changes may affect the ultimate
prediction of the model. LIME includes a fidelity measure, giving the user insight into howwell the explanation
from the surrogate model approximates the underlying model.

⇒ SHAP: Shapley Additive Explanations – known widely as ”SHAP” – is an increasingly common approach to
explaining complex model outputs. SHAP uses mathematical methods derived from a significant body of co‐
operative game theory research12 to analyze and explain the contributions of particular features to a model’s

10For a more detailed description of how various explainability techniques work, see Section 3.4 of FinRegLab (2021).
11In general terms, LIME develops surrogate models by sampling several data points and labeling them using the complex model. LIME then

assigns weights based on how far away the sample points are from the particular point being explained, giving a larger weight to the sampled
points closest to the point of interest. Finally, LIME trains an interpretable model – typically a linear model – on the weighted points to produce
the surrogate model (Dieber and Kirrane, 2020).
12See Shapley (1951); Aumann and Shapley (2015).
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prediction.13 Similar to LIME, SHAP explains how a model behaves locally. However, unlike LIME, SHAP
measures feature importance by conditionally averaging over features from a data point, and quantifying how
much the removed features impact the model output.14 Since an exact computation of SHAP values is com‐
putationally infeasible, software tools provide efficient approximations. The most popular of these tools is a
software package called SHAP.

⇒ Permutation Importance: This method measures how important a feature is to a model, by calculating how
the feature impacts the model’s accuracy. Permutation Importance values are calculated by randomly shuffling
(or “permuting”) the values of the feature in the test dataset – so that every data point has a new value for the
feature, and that value comes from a different data point. Permutation is considered more realistic than other
methods for modifying the dataset (such as adding random noise to each feature), since all values are taken
from the original dataset.

13The concept behind Shapley values is as follows in a cooperative game with N players and a function that values how much total output is
generated if all the players contribute together, the Shapley value is a method that attempts to measure the individual contribution of player i to
the output generated by the cooperation of all players. If the features are the players in a given complex model, from an economic standpoint, it
can be interpreted as a weighted average of a feature’s marginal contribution to every possible subset of grouped features.(Kumar et al., 2020).
14Mathematically, this process works as follows: if the point to be explained has three associated features, x1, x2, and x3, binary features are

assigned to each one representing whether the feature is known or unknown (so z1 = 0 if x1 is unknown or missing, and z2 = 1 if x2 is known).
Next, SHAP values (feature importance values) are generated (a1, a2, a3) assigning a score to each of the features that present a score for each
of the features. The higher the score, the more important the feature.
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4 RESULTS: ADVERSE ACTION NOTICES

This section presents our evaluation of the participatingmodel diagnostic tools with respect to a particular consumer
disclosure requirement: adverse action notices. It consists of two main sections: (1) background and (2) empirical
evaluation. The former section provides an overview of relevant policy considerations, legal and regulatory expec‐
tations, and operational considerations. The latter section presents our analysis that evaluates how well diagnostic
tools identify drivers of an adverse credit decision for purposes of producing required disclosures and also considers
broader policy considerations regarding improving the actionability of such disclosures.

4.1 BACKGROUND

This section considers in turn the legal and regulatory requirements regarding adverse action notices and operational
considerations relevant to this evaluation.

4.1.1 LEGAL AND REGULATORY OVERVIEW

Adverse action notices are among the most direct model transparency requirements in consumer lending.15 The
Equal Credit Opportunity Act and the Fair Credit Reporting Act require lenders to disclose to consumers their princi‐
pal reasons for denying credit applications or taking other “adverse actions,” including offering less favorable terms
based on information in applicants’ credit reports.16 These disclosures must describe the facts that were “relevant to
a decision, but [need not provide] a description of the decision‐making rules themselves.” (Selbst and Barocas, 2018).
These regulations do not specify a methodology for determining the principal bases for a decision or require lenders
to state whether the applicant’s assessment as to those bases was too high or too low. The regulations discourage
presenting to recipients more than four principal bases for adverse decisions.17 These requirements reflect broader
efforts to prohibit discrimination and enable the correction of errors in credit reports. Contemporary discussion of
these provisions has increasingly focused on how we serve broader policy goals by helping applicants who receive
adverse credit decisions understand their financial position and potentially adjust their financial behavior to improve
the probability of a favorable credit decision in the future.18

Lenders rely on “reason codes” to help fill the gap between technical explanations of the principal reasons driving
predicted default risk and explanations that communicate more effectively the consumer’s positioning in relation to
their credit standards. Many lenders opt to populate consumer disclosures with the set of reason codes suggested
15This overview and its counterpart in the fair lending and disparate impact section exclusively considers requirements for lenders operating

in the United States and focuses on requirements applicable to the distinct step of estimating the probability of default associated with an
application for credit. That means this evaluation does not consider activities like developing pre‐screened offers of credit, fraud reviews, stress
testing, and other areas of regulatory obligation.
16The laws define “adverse action” to include denials of credit applications on substantially the same terms and in substantially the same amount

as requested, unless the lender makes a counter‐offer. Adverse actions also include unfavorable decisions on existing credit arrangements, such
as negative changes in terms, denials of line increases, and reductions or cancellations of credit lines. 15 U.S.C. §§1681a(k)(1), 1691(d)(6). In 2011,
an FCRA amendment took effect to require similar risk‐based pricing notices where credit terms are “materially less favorable” than the terms
granted to a “substantial proportion” of other consumers. 15 U.S.C. §1681m(h); 12 C.F.R. §§222.70‐.75. ECOA’s disclosure requirements apply
to both consumer and commercial credit, although some details are different for business applicants. Federal agencies have excluded business
credit from FCRA’s disclosure requirements. 15 U.S.C. §1681a(c); 12 C.F.R. §§222.70(a)(2), 1002.9(a).
17In the event that the number of inquiries is a key factor, the adverse action notice may state up to five principal bases for the decision. See

12 CFR pt. 202, Supp. I, cmt. 9(b)(2)‐9.
18See Ficklin et al. (2020), Board of Governors of the Federal Reserve System, Supervisory & Regulation Letter 11‐7: Supervisory Guidance

on Model Risk Management (Apr. 4, 2011); Office of the Comptroller of the Currency, Bulletin 2011‐12: Sound Practices for Model Risk Man‐
agement: Supervisory Guidance on Model Risk Management (Apr. 4, 2011); Federal Deposit Insurance Corporation, Financial Institution Letter
22‐2017: Adoption of Supervisory Guidance on Model Risk Management (Jun. 7, 2017).
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in Regulation B19 or similarly broad categories to reduce regulatory uncertainty and manage concerns about reveal‐
ing competitively sensitive information about their underwriting processes and strategies. This approach may also
facilitate provision of information about the credit decision that is likely to be more understandable to consumers –
both because the reason codes often use less technical language than the names of individual model features and
because the reason codes can serve to aggregate very specific findings into explanations that provide a more holistic
sense of why the adverse decision occurred.

4.1.2 OPERATIONAL CONSIDERATIONS

In order to produce adverse action notices, lenders must be able to do two things: (1) identify drivers of the model’s
prediction for individual applicants who are subject to adverse decisions and (2) map those drivers to descriptions or
reason codes that will be given to the consumer. Generating information about drivers of adverse credit decisions
is an almost entirely technical challenge, and most of the firms participating in this evaluation are equipped to pro‐
vide this information for consumer lending clients. Mapping those drivers to reason codes is frequently automated
but reflects individual judgments that lenders make about what information to provide on the required disclosures
(including whether to use the illustrative reason codes in Regulation B or use bespoke reason codes). Even with
incumbent logistic regression models, lenders often group the identified features by correlations or logic so that
the mapping step will produce more meaningful and holistic statements about the applicant’s financial positioning.
Viewed in this light, one issue related to the use of more complex models is whether and how much additional in‐
formation about the model’s behavior is lost when information about a 100, 1000, or 10000 features is compressed
in the mapping process into four reason codes.
Few of the companies participating in this evaluation provide these mapping services to their clients, and the re‐

strictions on our ability to share the names of certain features in our data set with the participating companies would
have further complicated this process. Accordingly, this evaluation is limited to only the first activity – identifying
drivers of the model’s prediction for applicants who were subject to adverse decisions.
Production of adverse action notices requires that lenders be able to describe the reasons behind individual

model predictions. Technically, this requires that models have sufficient transparency so that two things can be
discerned: which features affect the model’s prediction and how those features affect estimated relationships in
the model. Producing the features that affected a specific prediction by a model – a local explanation20 – can be
challenging with machine learning models. But arguably providing key technical drivers of an underwriting model’s
predicted default risk or score does not fully address the adverse action requirements. Adverse action notices need
to include principal reasons for the adverse decision, which may include both model‐level factors and decision rules
that do not derive from the prediction of an underwriting model.21 But, to determine which model‐level factors
are ”principal,” lenders must assess those factors for an individual applicant relative to some baseline, such as the
average for all applicants or the average for a group of accepted applicants. This analysis helps to determine which
factors are driving that particular applicant’s predicted default or score the most in the wrong direction.
Lenders report that they use complex analytical and judgmental processes to generate adverse action reason

1912 C.F.R.pt.1002, App.C. The list is based on historically common underwriting factors and actually does provide some explanation for
many of the items listed, such as “Income insufficient for amount of credit requested,” “Insufficient number of credit references provided,” and
“Unacceptable type of credit references provided.” Others such as “Length of employment” and “Length of residence” are more general. Id.
20A local explanation identifies the basis for a specific prediction made by a model. By contrast, a global explanation refers to the identification

of a model’s high‐level decision‐making processes and such explanations are frequently used to evaluate a model’s overall behavior and fitness‐
for‐use.
21A decision rule that categorically prohibits extending credit to consumers with bankruptcies listed in their credit records is an example of a

non‐model‐based driver of an adverse credit decision.
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codes based on identified drivers of an adverse decision related to themodel and those related to non‐model decision
rules. One way to identify model‐level reasons is to consider for each recipient of an adverse decision a counterpart
whose application was accepted. The reference counterpart can be either the same for all adverse action recipients
or can be chosen based on specific attributes of the applicant in question. Various analytical methods can then be
used to understand the distance between the adverse action recipient and the chosen counterpart in order to identify
key drivers of the differences between them. Another related approach is to consider the contribution of individual
features to the difference in predicted default or score between a particular recipient of an adverse decision and
a collection of approved borrowers. The reason identified by either of these approaches – key model‐level drivers
of a specific adverse decision – can then be mapped to the more holistic, consumer‐facing reason codes that will
populate the required disclosure.

4.2 EMPIRICAL EVALUATION: SUMMARY

This section describes key results fromour evaluation ofmodel diagnostic tools in the context of consumer disclosure
and adverse action notice requirements.
We evaluate diagnostic tools designed to describe features related to adverse credit decisions on three dimen‐

sions: (1) fidelity, that is, the ability to reliably identify features that are related to adverse credit decisions; (2)
consistency, that is, the degree to which tools identify the same drivers for the same applicant; and (3) usability, that
is, the ability to identify drivers that provide a rejected applicant with a feasible path to acceptance within one year.

KEY FINDINGS

Weevaluate diagnostic tools designed to identify key features related to an adverse credit decision. There are
a set of diagnostic tools that are able to identify features of rejected applicants such that other applicants who
are similar on those features are also likely to be rejected. These tools are also able to identify features that,
when changed in a favorable direction, reduce predicted default probabilities by more than randomly chosen
or even closely correlated features. However, not all models perform equally well, and lender choices about
which diagnostic tools to use and how to deploy them is important to achieving their consumer disclosure
goals, particularly for complex models. Careful interpretation of the output of model diagnostic tools is
central to their effective use in consumer disclosure. Our usability tests show changing only a few features in
isolation is unlikely to overcome a rejection, even for the best‐performing tools. However, an approach that
considers broader groups of related features can provide a plausible path to loan acceptance..

Our main results are as follows

1. There are a set of diagnostic tools that exhibit high fidelity across both simple and complex models in a specific
sense. These tools are able to identify features of rejected applicants such that other applicants who have
similar credit characteristics are also likely to be rejected. These tools are also able to identify features that,
when changed in a favorable direction, reduce predicted default probabilities by more than randomly chosen
or even closely correlated features. Although our study could not assess the process for mapping outputs of
the tools to the the types of more holistic “reason codes” given to applicants on adverse action notices, the
identification of feature‐level information is the critical first input to the process of producing those consumer
disclosures, making our findings relevant to adverse action notices for credit decisions informed by machine
learning underwriting models.
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2. Lender choices aboutwhich diagnostic tools to use and how to deploy them can be important to achieving their
consumer disclosure goals, particularly for complex models. The high‐fidelity tools all use a version of Shapley
Additive Explanation (“SHAP”) feature importance measures and identify drivers as those with the largest
positive values (contributing most to a high default prediction for a particular applicant).22 The remaining
tools, which select drivers either based on absolute SHAP feature importance values or use a version of Local
Interpretable Model‐Agnostic Explanations (”LIME”),23 perform well for simple models but struggle to provide
fidelity for complex models. The tools that perform well on fidelity often identify somewhat different sets of
features to describe behavior of underwriting models even for the same regulatory purpose. In other words,
these tools identify many of the same drivers of an adverse decision for the same applicant. In general, if two
tools have a similar fidelity performance – either good or bad – the chances are high that they also exhibit a
similar level of consistency with each other, suggesting that successful tools are successful in the same way,
while tools with limited fidelity also struggle in the same way. In contrast, high‐fidelity and low‐fidelity tools
tend to exhibit little overlap in the drivers they identify.

3. Careful interpretation of the output of model diagnostic tools is central to their effective use in consumer
disclosure. Our two fidelity tests suggest that analyses of which features drive an adverse action decision are
more powerful if they account for feature correlations. Our fidelity test based on inspecting approval decisions
for similar – nearest neighbor – applicants implicitly accounts for these correlations. Correspondingly, we
find that most nearest neighbors would have also been rejected by the model. In contrast, our perturbation
test manipulates drivers of an adverse credit decision in isolation and exhibits muted reductions in default
probabilities. Since complex models put small weights on individual features, looking at the effect of individual
features in isolation has inherent limits in producing sizable changes in predicted default probabilities.

4. While model diagnostic tools are able to identify plausible drivers of model behavior, these descriptions do
not automatically translate into actionable paths for rejected applicants. This finding is based on our usability
tests that asked companies to provide information that might plausibly let rejected applicants obtain a more
favorable outcome within one year. Specifically, we analyze whether paths to loan acceptance suggested by
the participating companies overcome the adverse decision and provide a feasible path to an approval. While
model diagnostic tools do better at this task for simple models, changing the proposed drivers is often not
sufficient to overturn the adverse credit decision for complex models – unless we either allow for a large
number of changes, or for impractically large magnitudes of changes (relative to what we observe in the data).
This finding reflects that in models with more features, and especially in those that constitute complex models
in this evaluation, the marginal contribution of any one feature is small. This points to increased potential for
greater information loss for users of complex rather than models: production of adverse action reason codes
in conventional mapping processes may compress more information for complex models in order to provide up
to four reasons to the applicant. However, we want to caution that our findings should not be interpreted as
an argument against model complexity. Rather, we see the challenge of providing actionable sets of features
as an inherent limitation of a complex world with non‐trivial feature relationships and interdependencies. Even
for simple models, this process can be challenging because many of the feasible paths to acceptance that exist
in the world are not directly captured by the model of relatively few features. In the end, describing the effect
that a change in applicant behavior would have on the approval decision likely requires an understanding of

22For an explanation of SHAP, see Section 3.4.2.2.1 of our Market Context & Data Science Report (FinRegLab, 2021).
23For an explanation of LIME, see Section 3.4.2.1.1 of our Market Context & Data Science Report (FinRegLab, 2021).
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the causal relationship between features, which cannot be learned from the data alone and goes beyond the
scope of this study.

4.3 PARTICIPATION DETAILS AND DIAGNOSTIC TOOLS

4.3.1 DESCRIPTION OF TASKS

Participating companies were asked to complete two tasks pertaining to required adverse action disclosures. Both
tasks were performed on a set of 3000 rejected applicants who had applied for a credit card according based on
a credit inquiry in their credit report. This set is a random sample drawn from the set of applicants in our training
data for whom our XGBoost Baseline Model predicted a probability of default higher than 10%. We use an approval
threshold of 10% throughout the analysis. This threshold targets a predicted default rate of roughly 3% among
the approved applicants. We refer to applicants whose predicted probability of default exceeds the 10% approval
threshold as rejected applicants – or ‘rejects’. Our analysis could easily be replicated for other approval thresholds
or other populations, including samples focused on applicants who were relatively close to obtaining approvals. The
set of rejects is identical across all tests in this section. Note that because the rejects were sampled based on the
prediction of a particular prediction model, it is possible for a ‘rejected’ applicant to receive a default prediction
below the 10% approval threshold by another prediction model.

1. The first task asked each company to generate four drivers of adverse credit decisions for the set of 3000
rejected applicants. Companies provided a set of drivers for each Baseline Model as well as for the company’s
underwritingmodel(s) where applicable. The choice of four driverswasmotivated by the number of drivers that
are typically provided by adverse action notices. Companies did not map those local explanations into reason
codes as commonly provided to consumers under current disclosure regulation. This choice partly reflects
the required feature masking by our data provider as well as the fact that few of the companies participating
in this evaluation provide these mapping services to their clients. All our tests therefore pertain to the local
explanations of the model’s prediction, as opposed to the coarser information provided on adverse action
notices – the reasons that individual consumers typically see in practice.

2. The second task asked each company to identify a feasible path towards acceptance within 12months for each
of the 3000 rejected applicants. Since this exercise goes beyond current law, our choice of a period of one
year for the feasibility analysis is arbitrary – it simply reflects a period long enough for the identified behavioral
changes to affect a person’s credit criteria and short enough to be fully captured for most individuals in our
data sample. We again asked for a small number of changes (ideally up to four) though some approaches
required that we relax the constraint on the number of changes. To enable companies to incorporate domain‐
specific constraints, we provided the following additional information for the usability tasks. First, we provided
information on whether (and in which direction) a feature was mutable over 12 months. This information was
based on a manual assessment of each feature description by the research team. For example, the length of
the credit history can increase but not decrease over a 12 month window. Second, we provided summary
statistics on changes typically observed in the data over a 12 month window. To compute these statistics, we
pulled data on the same individuals 12 months and 24 months prior to their application date and computed
two sets of changes over a 12 month window each. Third, for categorical features, we provided transition
matrices that summarized the most likely transitions to another level of the categorical features in the data.
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These summary statistics have two important limitations. First, we did not provide summary statistics for dif‐
ferent starting values of a feature. For example, a 10% change in debt balances is quite a different change
when we start from a debt balance of $100 versus a debt balance of $100,000. Second, we did not provide in‐
formation onwhich features tend to change together. There may bemechanical interdependencies in the data,
for example, if the maximum credit utilization over the past 12 month changes, the average credit utilization
over the past 12 month would also change. There may also be interdependencies that are not mechanical but
frequently observed in the data. For example, if an applicant’s credit utilization increases, the applicant’s total
debt balance is also likely to increase. Both logical and effective interdependencies were not provided as part
of the summary statistics given the complexity of documenting these changes. These limitations imply that we
might over‐ or underestimate the degree to which feasible paths to acceptance exist. If we ignore that some
other features are likely to mechanically improve along with the suggested changes, we will underestimate the
potential for feasible paths to acceptance. However, it is also possible that other features would deteriorate as
a result of the suggested change – leading us to overestimate the size of the suggested improvement. Consider
the case where an applicant is told to reduce the outstanding balances on credit cards. The applicant might
instead turn to other sources of credit such as personal loans and increase loan balances on personal loans.
The net effect on the credit score of these two opposing changes might be much smaller than the estimated
effect of looking solely at the reduction in credit card balances.

4.3.2 PARTICIPATION DETAILS

Out of seven companies participating in this study, six companies participated in the adverse action notice part of
the research. Out of these six companies, one company completed only the second task of finding feasible paths
to acceptance. Some companies only provided results for selected models. We also included results for four open‐
source tools that were generated by the research team. Due to processing constraints, these open‐source tools were
only included in the first task.

4.3.3 DESCRIPTION OF TOOLS

We describe the approaches participating companies took in solving the two tasks.

Drivers of an adverse credit decision We first describe the tools used to generate the four drivers of adverse
credit decisions. The following types of model diagnostic tools were used in the analysis. Three companies used
some version of the SHAP feature importance package and based their drivers of adverse credit decisions on raw
SHAP importance values. That is, these approaches select the four features with the largest positive SHAP values.
Among these three companies, one company considered only continuous and globally monotonic features.
One company used the SHAP feature importance package but ranked features by the absolute sign of the SHAP

feature importance (as opposed to focusing only on the features that were assigned a positive feature importance
by the SHAP software package). We computed an open‐source version of the SHAP feature importance package
and created drivers both based on absolute and raw SHAP feature importance values. One company used the LIME
feature importance package and based the drivers on absolute LIME feature importance values. We also included
an open‐source implementation of the LIME feature importance package and included both a version based on raw
and absolute importance values. See Section 3.5 for more background on these model diagnostic tools.
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Path to acceptance The second task asked participating companies to find a feasible path to acceptance for each
rejected applicant within one year. Generating a feasible path to acceptance is a challenging problem to solve be‐
cause we are looking for a minimal number of small changes to get an applicant over the approval boundary. There
are three key challenges. First, there is a computational challenge. We have to not only consider possible combi‐
nations of features but also possible ways of perturbing these features. Second, there is the challenge of ensuring
that explanations are feasible (e.g. an applicant’s number of total past defaults generally does not decrease unless a
particular default is more than seven years old) and plausible (e.g. an applicant’s income is unlikely to double in a 12
month window). This second challenge calls for incorporating domain‐specific constraints in the search for a path
to approval. Finally, there are questions about how to handle features moving together in response to changes in
applicant behavior.
Broadly speaking, companies took two types of approaches to this task. The first set of approaches involved

predominantly manual analyses that proceeded in two steps. The first step selects a small set of features that both
meet some basic feasibility/plausibility constraints and have high feature importance values. The second step is then
a trial‐and‐error approach to finding feature perturbations that are sufficient to bring the applicant over the approval
threshold. The second approach relies on more formalized algorithmic methods that solve the optimization problem
for the minimal number of smallest changes under a set of feasibility/plausibility constraints.
Wenowdescribe individual approaches inmore detail. The first approach considers all continuous (non‐categorical),

globally monotonic features that are mutable over a 12 month horizon (according to the classification the research
team provided). Among these features, the four features with the largest positive SHAP values are selected. To
determine the magnitude of change, this approach runs a linear search algorithm to determine the smallest amount,
in terms of percentiles, required to get the applicant accepted. This algorithm tries step‐wise increments and stops
the moment an applicant has a predicted default probability at or below the approval threshold. If the suggested
changes exceeds the maximum or minimum changes observed in the data (according to the summary statistics the
research team provided), the algorithm returns no feasible changes. This approach assumes that all features should
be changed by an equal amount (percentile‐wise) in the absence of some stronger criteria for favoring changes in a
particular feature.
A second approach starts with the features with the top‐6 SHAP values and uses a trial‐and‐error measure to

find the best set of feature changes. For continuous features, this approach tries different changes between the
minimum and maximum change over the 12‐month period supplied by the research team. For categorical features,
changes are only considered if the transition probability to another level of the categorical feature was greater than
10%. If none of these changes bring the applicant over the approval threshold, this approach concludes that no
feasible path to acceptance exists.
A third approach relies on finding a cluster of approved applicants whose credit characteristics look the most

attainable for a particular rejected applicant in light of feasibility/plausibility constraints. This approach first defines
clusters among approved applicants using an unsupervised machine learning algorithm. It first finds the clusters that
look closest to the rejected applicant and then diagnoses onwhich features the reject looks worse than the approved
applicants in the cluster. Among those features, this approach selects the ones that satisfy the feasibility/plausibility
constraints. In particular, any immutable features that would need to change in a direction that is not feasible are
dropped from consideration. Based on the remaining features, the model prediction is computed as if the reject
were given the median value of the applicants in the good cluster. Among all clusters, the one is chosen that leads
to approval and also the highest likelihood of an approval.
Two additional approaches are based on automated, algorithmic approaches to generating counterfactual expla‐
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nations. One is based on a genetic algorithm (Schleich et al., 2021) and another on an algorithmic recourse approach
(Verma et al., 2021). Both approaches imposed basic immutability constraints excluding features that were classified
as immutable over a 12‐month horizon. One approach also imposed two additional constraints (a) that the sign of
the change is consistent with the constraints described by the research team and (b) that all features in a feature
family (defined by baseline feature, outlier flag and missing value indicator) have to move together.

4.4 EVALUATION: FIDELITY

Our first dimension of evaluation is fidelity, that is, the ability to reliably identify features that are in fact the principal
drivers of the adverse credit decision. We first describe the fidelity tests on which our analysis is based and then
present results.

Fidelity: the ability to reliably identify features that can help describe how models take adverse credit deci‐
sions.

4.4.1 EVALUATION DESCRIPTION

Our evaluation of the fidelity of model diagnostic tools in the context of consumer disclosure is based on two tests.
Each test evaluates how well the four drivers of an adverse credit decision provided by a model diagnostic tool
identify features in the model that are in fact indicative of the adverse decision. As there is no ground truth in our
experiment, our analysis is based on evaluating (a) the relative performance of tools and (b) the performance of tools
relative to a benchmark based on either randomly chosen or closely correlated drivers of an adverse credit decision.
The first test asks whether applicants that look similar to the rejected applicant with regard to the four identified
drivers for an adverse decision are also rejected by the model – in the sense that the model predicts a default
probability above our approval threshold of 10%. The second test perturbs each identified driver in a favorable
direction (where possible) and records how large the resulting drop in the model’s default prediction is as compared
to perturbations of other features. We describe each test in detail below.

FIDELITY TESTS

Weuse two tests to evaluate the fidelity of model diagnostic tools in the context of consumer disclosure. The
nearest neighbor test asks if other applicants in the data who look identical on the four drivers of an adverse
credit decision also get assigned a high default prediction by the model. If this is not the case, we learn that
other aspects of the predictionmodel – beyond the four drivers identified –must have been important for the
adverse decision. We would conclude that fidelity is low. The perturbation test ask whether changing – or
perturbing – the four features identified as drivers of the adverse decision has a greater impact on themodel’s
prediction than (a) changing other, randomly selected, features in the model or (b) changing other features
that are closely correlated with the identified driver. If this is not the case, we learn that other aspects of
the prediction model are at least as important in explaining the adverse decision. We would conclude that
fidelity is low.
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Nearest neighbor test This first fidelity test evaluates the following hypothetical scenario: a loan applicant subject
to an adverse credit decision receives four drivers for that decision, that is, four features in the model. The applicant
then sets out to find his or her “neighbors” among other applicants who share the four attributes identified as drivers
for the adverse decision. When we select the nearest neighbor we ensure that this neighbor has as similar feature
values on the four drivers as possible. The applicant then compares himself or herself to these neighbors: did the
neighbors get a different score from the underwriting model? Were they approved for a loan?
High fidelity corresponds to the neighbors also being rejected by the model. Intuitively, if only the four drivers

mattered for the loan rejection, then we should not see another applicant who looks similar based on those dimen‐
sions but who also has a much lower predicted probability of default. We can compare fidelity of different diagnostic
tools by evaluating howmany of the neighbors are accepted — with lower acceptance rates corresponding to higher
fidelity. We provide a common benchmark to evaluate the fidelity properties by randomly choosing four features
on which to select a nearest neighbor. High fidelity implies that the diagnostic tools perform better – have fewer
accepted neighbors – than the benchmark that uses a set of random features.

Perturbation test The second fidelity tests evaluates the following hypothetical scenario: if we change each driver
for an adverse decisions in the favorable direction, how much can we reduce the predicted probability of default?
High fidelity implies that this perturbation leads to a large drop in the predicted probability of default. We can
compare fidelity of different diagnostic tools by evaluatingwhich tools lead to larger reductions in default predictions.
Another way to compare the relative performance of tools is to askwhether perturbations reduce default predictions
enough to bring the applicant below the approval threshold. The higher the fraction of approved applicants, the
higher the fidelity of the tool. However, we regard this as a challenging benchmark to meet for two reasons: First,
many of the rejected applicants have high predicted probabilities of default, which effectively means that perturbing
only four features would have to produce very large changes in predictions to produce a result that would meet
the threshold for acceptance. Second, for complex models that have hundreds of features, it is challenging for only
four features to have a quantitatively large impact on predictions. We also create a common benchmark to evaluate
the fidelity performance of the tools by comparing the results to a ‘random’ benchmark. We perform the same
perturbation on four randomly chosen features. Fidelity implies that we should see larger changes in probabilities
when perturbing the four drivers relative to four randomly chosen features.
We use two different perturbation schemes described in detail in Appendix C. The first scheme emphasizes

inducing as many changes as possible (even if this might mean an unfavorable change) while the second scheme
does not perturb a feature if the change would be unfavorable. We show results for the perturbation scheme that
induces as many changes as possible in the main text. Results for the second perturbation scheme are qualitatively
similar and will be provided in an online appendix.
We also test whether perturbing the drivers of an adverse decision induce larger changes than highly correlated

features. To implement this test, we choose the feature that is mostly highly correlated with each driver. We then
conduct the same perturbation tests with the four correlates. High fidelity corresponds to the four closely correlated
features leading to lower changes in predictions relative to the four drivers. Intuitively, one challenge for diagnostic
tools when faced with complex models is the ability to pick out the most important features among a set of poten‐
tially highly correlated features. This test offers us insight into the ability of diagnostic tools to differentiate among
correlated features.
Finally, we test whether the drivers of an adverse decision satisfy a form of monotonicity. Intuitively, we expect

the first driver to matter more than the fourth driver. To test a weak form of monotonicity, we ask whether the
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perturbation of the first two drivers lead to larger changes in prediction than those of the third and fourth driver.

4.4.2 FIDELITY RESULTS

KEY FINDINGS

We find substantial variation in the fidelity of diagnostic tools that provide four drivers for an adverse credit
decision. One cluster of tools exhibits high fidelity in the nearest neighbor test for both simple and complex
models, in the sense that these tools are able to identify features that differentiate rejected applicants from
other applicants. In the perturbation test, these tools are also able to identify features that, when changed in
a favorable direction, reduce predicted default probabilities by more than randomly chosen or even closely
correlated features. However, our results suggest that changing these features is often not sufficient to
overturn the adverse credit decision. Instead, these features should be understood in context of their feature
correlations: only moving them together with correlated features shows the full effect on credit approvals.

Our first dimension of evaluation is fidelity, that is, the ability to reliably identify features that are in fact related to
the adverse credit decision. We find substantial variation in the fidelity of diagnostic tools that provide four drivers
for an adverse credit decision. One cluster of tools exhibits high fidelity and work equally well for both simple and
complex models. These tools all derive the four drivers by ordering features by raw Shapley values. This cluster
contains three company responses and one open‐source tool. A second cluster exhibits more mixed fidelity perfor‐
mance. This second cluster performs significantly better for simple than for complex models but overall fidelity is
lower than for the first cluster. This second cluster contains responses that derive drivers either from LIME or from
responses that order features by absolute SHAP values. This cluster contains two company responses and three
open‐source responses. We also find variation in fidelity within both clusters – although this variation is quanti‐
tatively much smaller than across clusters. In general, we find that open‐source tools do not perform significantly
worse (or better) than the company responses. This finding implies that the performance of each cluster is not driven
by the open‐source responses. The within‐cluster differences in fidelity suggest that micro‐choices that govern the
way a specific tool is used matter less than the overall choice of diagnostic tool.
Our fidelity tests suggest that the best tools identify features that indeed relate to the adverse credit decision.

However, our results suggest that changing these features is often not sufficient to overturn the adverse credit
decision. Instead, these features should be understood in context of their feature correlations: only moving them
together with correlated features shows the full effect on credit approvals. We further explore attempts to focus
adverse action notices specifically on factors that are actionable by consumers in the following section.

Complex models We find substantial variation in fidelity in both nearest neighbor and perturbation tests. Starting
with the complexmodels in Table 3, we find that responses based on the SHAP feature importance package show the
highest fidelity. Among the SHAP responses, the four responses ordering feature importance by raw SHAP feature
importance values perform the best.

The first set of columns show fidelity results for the nearest neighbor test. All SHAP responses perform better than
the benchmark based on random features while only 78% of LIME responses beat this benchmark. The responses
based on sorting by raw SHAP values achieve high overall fidelity with 6% – or fewer – of neighbors having a
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Table 3: AAN: FIDELITY TEST – COMPLEX MODELS

Nearest neighbor test Perturbation test
Fraction Fraction

Neighbors Beat Ranking Change Beat Change to Beat Monotonic Ranking
accepted random in PD random accept correlated

All SHAP
Average 0.09 1.00 3.83 ‐0.03 1.00 0.11 0.96 1.00 3.50
Best 0.03 1.00 1.00 ‐0.05 1.00 0.15 1.00 1.00 1.00
Worst 0.24 1.00 8.00 0.00 1.00 0.02 0.75 1.00 6.00
N 6

Raw SHAP
Average 0.04 1.00 2.50 ‐0.04 1.00 0.13 1.00 1.00 2.50
Best 0.03 1.00 1.00 ‐0.05 1.00 0.15 1.00 1.00 1.00
Worst 0.06 1.00 4.00 ‐0.03 1.00 0.13 1.00 1.00 4.00
N 4

LIME
Average 0.28 0.78 7.33 0.01 0.56 0.03 0.56 0.89 8.00
Best 0.20 1.00 6.00 0.00 0.50 0.05 0.67 1.00 7.00
Worst 0.42 0.33 9.00 0.02 0.67 0.01 0.50 0.67 9.00
N 3

Random
Average 0.33 0.00 0.02

Note: The table shows results from two fidelity tests for the four complex models by type of model diagnostic tool. Raw SHAP
is a subset of the All SHAP results. The first three columns show results from the nearest neighbors test. High fidelity
corresponds to a low number of nearest neighbors that are accepted and a fraction of responses that beat random close to 1.
The remaining columns show results for the perturbation test using the first perturbation scheme (results for the second
perturbation scheme can be found in Appendix C). Change in PD refers to the differences in predictions induced by the
perturbation. High fidelity corresponds to more negative changes in predictions as this implies the perturbation led to a large
drop in the predicted probability of default. Beat random and beat correlated refer to the fraction of models for which the
drivers identified by the diagnostic tools induce a larger change in probabilities than random drivers and correlated drivers,
respectively. Monotonic refers to how often the top‐2 features induce larger probability changes than top 3 and 4 features. The
final row provides descriptive information about the collection of random features used for the benchmark comparison.

predicted probability of default low enough to be accepted (recall that high fidelity implies values close to zero).
For the remaining tools, the fraction of accepted neighbors ranges from 15‐24%. These numbers suggest that, for a
significant portion of rejects, drivers other than the four named by the response are relatively important drivers of the
adverse decision. We summarize these performance differences in a ranking that first sorts responses by whether
they perform better than the benchmark and then sorts by the lowest share of accepted neighbors. A ranking of
1 corresponds to the best performance. Equal performance is assigned the same rank. The ranking results confirm
the relative performance of the diagnostic tools.
The second set of columns show results from the perturbation test. SHAP responses, in particular those based

on raw values, again display the highest fidelity. These tools consistently beat the benchmark that perturbs random
features. They also induce more negative changes in predicted probability of default, in line with the perturbation
reducing the probability of default for the applicants. These tools have the highest fraction of rejects who cross the
approval threshold following the perturbation. In contrast, LIME‐based responses only beat the benchmark about
half of the time and often induce changes of the wrong sign, that is, the probability of default goes up and not
down after the perturbation. The fraction of rejects who are accepted following the perturbation is in the low single
digits. We again summarize these performance differences in a ranking that first sorts responses by whether they
perform better than the benchmark and then sorts by the largest drop in predicted default probability. A ranking of
1 corresponds to the best performance. Equal performance is assigned the same rank.
Even the best diagnostic tools lead to quantitatively small changes in predictions. To give a sense of scale,
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the average change in prediction resulting from the perturbation is about 17% of the standard deviation of model
predictions in the sample of 3000 rejects. Intuitively, the variation across predicted probabilities of default among the
3000 rejects is about 5 times larger than the change in prediction we observe as a result of the perturbation. These
small magnitudes are also reflected in the majority of rejected applicants not crossing over the approval threshold.
The best response leads to approval for 15% of the rejects. These small magnitudes are likely due to two reasons.
First, our perturbation scheme respects the bounds of the data; for example, we do no allow perturbations that push
a feature below (above) the minimum (maximum) values observed in the data. Second, our complex models include
hundreds of features, which makes it challenging for only four features to lead to large changes in probabilities.
Third, some of our applicants might have default predictions far from the approval threshold.
Wefind similar patterns in the relative performance of diagnostic toolswhen it comes to the ability to differentiate

drivers from closely correlated features. The majority of SHAP responses do better than the set of four correlated
features. That is, perturbing the four drivers reduces predicted default probabilities by more than perturbing the
four most highly correlated features. Among the raw SHAP responses, all responses do better than the correlated
features. For LIME‐based approaches, close to 60% do better than the correlates.
Finally, we test the monotonicity properties of the provided drivers. This test asks whether the ordering of the

four drivers corresponds to the size of the changes in predictions. If monotonicity holds, then the first two drivers
induce larger changes on average than the third and fourth. We find that this form of monotonicity is satisfied by all
SHAP responses (both raw and absolute feature orderintg) and by the majority of LIME responses.

SimpleModels Fidelity is more equal across diagnostic tools for the simple models. We also observe higher fidelity
for simple models than for complex models but the magnitude of improvement is often small. The tools that perform
best for complex models also perform well for simple models. In contrast, tools that perform less well on complex
models nowperformwell. These findings suggest that diagnostic tools exist that can handle both simple and complex
black‐box models for the purpose of creating drivers of adverse credit decisions.

Table 4 shows results for the logit model. The first set of columns shows results for the nearest neighbor fidelity
test. We find that all responses perform better than the benchmark that matches neighbors on randomly selected
features. Overall, results are more homogeneous than for complex models. SHAP‐based responses still perform
better than the LIME‐based responses but the gap is smaller with 8% versus 18% of neighbors being accepted
(relative to 9% versus 28% for complex models). Responses based on raw SHAP values now have a more mixed
performance including some that perform very well while some perform less well than the best responses using
LIME. All LIME‐based responses have higher fidelity than in the case of complex models.
The second set of columns in Table 4 shows results for the perturbation fidelity test. Fidelity performance is more

similar for SHAP and LIME responses. LIME‐based responses performmuch better for the logit than for the complex
models. This finding might reflect that LIME relies on local linear approximation to determine feature importance.
With the exception of two SHAP responses, this statement is also true for the SHAP‐based responses. However,
the improvements in fidelity are much smaller for the SHAP‐responses given their high fidelity for complex models.
These patterns also extend to the identified features’ ability to produce larger changes than the correlated features,
as well as for the monotonicity analysis.
The magnitudes of changes in predictions are larger for the logit model than for the complex models. This dif‐

ference is to be expected given that the logit models contain only a small number of features making it easier for
a single feature to have a large impact on model predictions. However, in theory, this property also makes it more
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Table 4: AAN: FIDELITY TEST – LOGIT MODELS

Nearest neighbor test Perturbation test
Fraction Fraction

Neighbors Beat Ranking Change Beat Change to Beat Monotonic Ranking
accepted random in PD random accept correlated

All SHAP
Average 0.08 1.00 3.83 ‐0.05 0.83 0.08 0.92 0.83 5.67
Best 0.03 1.00 1.00 ‐0.17 1.00 0.27 1.00 1.00 2.00
Worst 0.17 1.00 8.00 0.08 0.00 0.01 0.50 0.00 9.00
N 6

Raw SHAP
Average 0.09 1.00 4.50 ‐0.07 1.00 0.09 1.00 0.75 5.25
Best 0.03 1.00 2.00 ‐0.17 1.00 0.27 1.00 1.00 2.00
Worst 0.17 1.00 8.00 ‐0.01 1.00 0.02 1.00 0.00 8.00
N 4

LIME
Average 0.18 1.00 7.33 ‐0.12 1.00 0.16 1.00 1.00 3.67
Best 0.16 1.00 6.00 ‐0.19 1.00 0.32 1.00 1.00 1.00
Worst 0.21 1.00 9.00 ‐0.04 1.00 0.07 1.00 1.00 7.00
N 3

Random
Average 0.27 0.01 0.02

Note: The table shows results from two fidelity tests for the two logit models by type of model diagnostic tool. Raw SHAP is a
subset of the All SHAP results. The first three columns show results from the nearest neighbors test. High fidelity corresponds
to a low number of nearest neighbors that are accepted and a fraction of responses that beat random close to 1. The remaining
columns show results for the perturbation test using the first perturbation scheme (results for the second perturbation scheme
can be found in the Appendix). Change in PD refers to the differences in predictions induced by the perturbation. High fidelity
corresponds to more negative changes in predictions as this implies the perturbation led to a large drop in the predicted
probability of default. Beat random and beat correlated refer to the fraction of models for which the drivers identified by the
model diagnostic tools induce a larger change in probabilities than the random drivers and correlated drivers, respectively.
Monotonic refers to how often the top‐2 features induce larger probability changes than top 3 and 4 features. Ranking refers to
ranking of all 9 responses by fidelity performance (1 being best and 9 worst). See text for details. The final row provides
descriptive information about the collection of random features for the benchmark comparison.

challenging to beat the random benchmark since randomly chosen features are more likely to have a high impact on
model predictions than randomly chosen features in a model with hundreds of features. However, in practice we
find that model diagnostic tools are able to beat the random benchmark even in the case of simple models.

Company models Table 5 show the results of the perturbation test when applied to responses we received for the
Company Models. The responses for the Company Models exhibit a fidelity performance that is weaker than the
high‐fidelity responses for the Baseline Models. Across all responses, we find that the drop in probabilities (and the
share of applicants who move across the approval threshold) is relatively high – especially, when compared to the
results for complex Baseline Models. In particular, responses for one model lead to acceptance for close to 40% of
rejects, which exceeds the performance of all responses for the Baseline Model. We also find that the identified
drivers induce higher changes in predicted probabilities relative to closely related features. We were not able to
conduct this test for one company model since this company used a set of new, engineered features for which it was
not feasible to find close correlates. While fidelity is generally high, there is variation among the responses for the
Company Models. This variation likely reflects differences in model complexity as well as the use of different types
of model diagnostic tools.
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Table 5: AAN: FIDELITY TEST – COMPANY MODELS

Four Change Change Beat Monotonic
drivers in PD to accept correlated

Alpha ‐0.08 0.20 0.62 0.52
Beta ‐0.10 0.13 n/a 0.52
Gamma ‐0.06 0.11 0.80 0.78
Delta ‐0.08 0.16 0.93 0.50
Epsilon ‐0.10 0.38 1.00 0.66

Note: The table shows results from the perturbation fidelity test for Company Models using the first perturbation scheme
(results for the second perturbation scheme can be found in the Appendix). Change in PD refers to the differences in predictions
induced by the perturbation. Change to accept refers to the fraction of rejected applicants who move below the approval
threshold as a result of the perturbation. High fidelity corresponds to more negative changes in predictions as this implies the
perturbation led to a large drop in the predicted probability of default. Beat correlated refers to the fraction of models for which
the drivers identified by the model diagnostic tools induce a larger change in probabilities than the correlated drivers,
respectively. Monotonic refers to how often the top‐2 features induce larger probability changes than top 3 and 4 features.

4.5 EVALUATION: CONSISTENCY

The second dimension of our evaluation is consistency.

Consistency: whether drivers identified by the same tool across different models or by different tools across
the same model vary.

4.5.1 EVALUATION DESCRIPTION

We consider two types of consistency: (1) consistency of drivers of an adverse credit decision for the same applicant
and model across different model diagnostic tools and (2) consistency of drivers of an adverse credit decision provided
by the same tool across different models for individual applicants.

CONSISTENCY TESTS

We test two notions of consistency. Consistency across tools asks how often two participating companies –
or open‐source tools – identify the same features as drivers of rejection decisions. Consistency acrossmodels
asks how often a given model diagnostic tool identifies the same features as drivers of rejection decisions
across different underwriting models.

Consistency across tools may not always be desirable. If the model diagnostic tools analyzed in this study all
exhibit high fidelity, then consistency seems like a good property to have – we obtain similar answers regardless of
the precise tool used. If, however, some tools perform worse than others, it is not clear that we would expect (or
want) consistency. Assuming tools have substantial fidelity, however, it is important that the drivers provided to a
consumer do not vary wildly depending on the method used to generate the drivers for the adverse credit decision.
As an extreme example, consider the case where one tool simply randomly draws features. Clearly, we would not
want consistency with this random draw. For this reason, we present results by the type of diagnostic tool to reflect
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the differences in fidelity that we discuss in the preceding section. However, if the inconsistency reflects that the
tools are detecting highly correlated features, the lack of consistency may be relatively inconsequential.
Consistency across models is helpful to gain insights into how diagnostic tools work but is not necessarily a

desirable property. If we believe that different models learn similar fundamental (causal) relationships about the
world and our goal is to identify the most important of those relationships for a given rejected consumer, then
consistency is desirable. In other words, if we are hoping to learn about relationships in the world, we would expect
a good model diagnostic tool to consistently identify these facts about the world. If, however, we believe that
different models express different correlational patterns in the data and that consumer disclosure should answer
the question why a particular model rejected an application, then it is not clear that we would want (or expect)
consistency across models. If models are learning different patterns, we would prefer the model diagnostic tool to
correctly identify the pattern that led to a rejection for that particular model.

4.5.2 CONSISTENCY RESULTS

KEY FINDINGS

Overall, tools that perform equally well often identify different drivers of an adverse credit decision for the
same applicant. About half of identified drivers agree on average for simple models, while the number is
lower for complex models and across diagnostic tools based on different techniques. The fact that even
high‐fidelity diagnostic tools have only moderate agreement in drivers highlights that their output should be
interpreted in the context of their feature correlations, leading to multiple plausible ways of describing model
behavior.

Consistency across tools Table 6 shows pairwise overlap across tools for each model type to show consistency in
drivers identified by each company’s tool when assessed against each of the other participants. The table shows the
average level of consistency in identified drivers for the entire population of 3000 rejects. We combine results for
the complex models since consistency patterns are similar but separately present results for logit and simple neural
network models. We order responses by type of diagnostic tool with each cell in the table representing the fraction
of drivers that overlap between a pair of responses. To understand our measure of consistency, suppose that an
applicant sent an identical credit application to two lenders and received two adverse credit decisions. She also
receives two explanations for the decisions that contain four features each. She compares the two explanations for
the adverse credit decisions by comparing how many features are included in both explanations. At most the two
responses she received can have 4 features in common (or 100% overlap), which corresponds to the highest possible
consistency. At the other extreme, two responses can have no features in common (0% overlap), which corresponds
to zero consistency. In Table 6, we show consistency numbers averaged across the 3000 rejected applicants that
were provided to each participating company. Consistency numbers are expressed as the fraction of features that
agree which ranges from 1 (100% overlap) to 0 (0% overlap).
Unsurprisingly, consistency is higher for simpler models but not by as much as we might expect given that these

models are much less complex (44 features versus 652 features in the complex models). The degree of overlap is
still less than 50% for the majority of response pairs for the two simple models. Consistency is higher within type
of diagnostic tool than between diagnostic tools. However, overlap is far from complete even within the same type
of diagnostic tool, suggesting that there are substantial differences arising from the precise implementation details.
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In practice, an overlap of 50% may prove to be a perfectly adequate basis for generating appropriate adverse
action notices. As discussed in the Section 4.1 above, generation of the features that drive a model’s prediction of
default for a particular applicant is only the first step in the process of identifying the information that an applicant
will receive on this disclosure. The next step is to assess how the identified drivers of the prediction correlate with
each other and determine the relative contribution that those groups of features made to the prediction. In future
analysis, we expect to extend the consistency analysis in this section to evaluate the presence of correlated features
among drivers produced by various model diagnostic tools that did not match in our first consistency analysis. If
“unmatched” features show significant correlation, the tools are producing information that respond to the same
signal in the applicant’s data and are likely providing information for purposes of generating adverse action notices
that is consistent enough to support lenders’ needs.
We now discuss each model type in detail. As expected, the logit model exhibits higher overlap – with many

responses agreeing on 50% features or more. SHAP responses have high overlap and reach up to 90% overlap.
Somewhat surprisingly, there is high consistency between SHAP responses based on raw and absolute feature im‐
portance, with the highest overlap pair also reaching 90% overlap. Consistency between SHAP and LIME responses
is still considerable with one pair reaching 60% overlap.
Consistency for the simple neural network models differs quite markedly from the logit models. Overall, there

is less consistency for the simple neural network models. The exception to this statement are the LIME responses
which are almost in perfect agreement on the four drivers. Consistency within the SHAP responses is lower with
the most consistent pair reaching 75% overlap but the least consistent pair having only 4% overlap. There is very
little overlap between SHAP and LIME responses, even less so than for the complex models.
Agreement patterns for the complex models look similar to the logit results although magnitudes of agreement

decline. For example, the pair of SHAP responses with the highest overlap has 60% of drivers in common while the
pair of logit responses with the highest overlap has 90% of drivers in common. SHAP responses show the highest
overlap. In contrast to the simple neural network results, LIME responses show very little overlap with each other
and with the SHAP responses.

Consistency across models Table 7 focuses on the degree to which a particular type of tool (such as SHAP raw)
identifies two or more of the same drivers as most influential in causing a particular consumer to be rejected under
different pairs of models (such as logit regression vs. neural net). The results are averaged across all 3000 rejected
applicants in the sample and all tools of the same type. We group results by threemodel diagnostic type: SHAP based
on raw feature importance values, SHAP based on absolute feature importance values, and LIME. It is important to
note that while this test may provide insights into how the tools work, wewould not necessarily expect a high degree
of consistency to the extent that we believe that different model types are learning different correlational patterns in
the data. In other words, if two models give extremely different predictions, then we would expect low consistency
(regardless of diagnostic tool).
Overall consistency acrossmodels is relatively lowwith amaximumoverlap of 30% and overlap often in the single

digits. The model consistency patterns are different across the three families of diagnostic tools. For SHAP based
on raw feature importance, the highest consistency is between the two complex models (30%) followed by the logit
and xgboost models (25%), followed by the logit and neural net models (16%). There is little overlap with the simple
neural network model. SHAP based on absolute values has the highest overlap between the simple neural network
and logit model (21%) followed by the xgboost–logit and xgboost–neural net pairs (both 13%). LIME responses see
the highest overlap between neural net and logit (17%) followed by neural net‐simple neural network pair (15%).
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Table 6: AAN: CONSISTENCY ACROSS RESPONSES

(a) PANEL A: LOGIT MODELS

shap raw 1 shap raw 2 shap raw 3 shap raw 4 shap abs 1 shap abs 2 lime raw 1 lime abs 1 lime abs 2
shap raw 1 1.00
shap raw 2 0.89 1.00
shap raw 3 0.46 0.40 1.00
shap raw 4 0.62 0.58 0.61 1.00
shap abs 1 0.50 0.47 0.50 0.70 1.00
shap abs 2 0.89 0.80 0.52 0.59 0.48 1.00
lime raw 1 0.07 0.04 0.18 0.09 0.07 0.11 1.00
lime abs 1 0.44 0.52 0.38 0.56 0.47 0.38 0.25 1.00
lime abs 2 0.58 0.61 0.23 0.29 0.42 0.55 0.13 0.47 1.00

(b) PANEL B: SIMPLE NN MODELS

shap raw 1 shap raw 2 shap raw 3 shap raw 4 shap abs 1 shap abs 2 lime raw 1 lime abs 1 lime abs 2
shap raw 1 1.00
shap raw 2 0.75 1.00
shap raw 3 0.08 0.09 1.00
shap raw 4 0.04 0.05 0.40 1.00
shap abs 1 0.55 0.52 0.13 0.23 1.00
shap abs 2 0.66 0.63 0.01 0.00 0.59 1.00
lime raw 1 0.02 0.02 0.08 0.02 0.02 0.03 1.00
lime abs 1 0.02 0.02 0.08 0.02 0.02 0.03 1.00 1.00
lime abs 2 0.02 0.02 0.08 0.02 0.02 0.04 0.99 0.99 1.00

(c) PANEL C: COMPLEX MODELS

shap raw 1 shap raw 2 shap raw 3 shap raw 4 shap abs 1 shap abs 2 lime raw 1 lime abs 1 lime abs 2
shap raw 1 1.00
shap raw 2 0.60 1.00
shap raw 3 0.31 0.31 1.00
shap raw 4 0.50 0.60 0.37 1.00
shap abs 1 0.40 0.51 0.28 0.67 1.00
shap abs 2 0.07 0.07 0.04 0.06 0.06 1.00
lime raw 1 0.16 0.15 0.02 0.08 0.08 0.00 1.00
lime abs 1 0.13 0.23 0.07 0.20 0.23 0.02 0.21 1.00
lime abs 2 0.03 0.03 0.03 0.03 0.07 0.02 0.01 0.01 1.00

Note: The pairwise consistency table shows the fraction of overlap in the four drivers identified by particular tools when each
pair is compared to each other and averaged across the 3000 applicant sample. Each row/column corresponds to one of the
nine responses received. Responses are only identified by the type of diagnostic tool used. Panel a shows results for the logit
models. Panel b shows results for the simple neural network models. Panel c shows results for complex models (xgboost and
neural net). Each number is a fraction that represents the number of features (out of a maximum of four) that two responses
have in common. Fractions are averaged across models. 1 indicates perfect overlap (four features in common) and 0 indicates
no overlap (0 features in common). 0.25 implies that two responses have 1 feature in common; 0.5 implies that two responses
have 2 features in common; and 0.75 implies that two responses have 3 features in common.
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Table 7: AAN: CONSISTENCY ACROSS MODELS
(a) PANEL A: SHAP (RAW VALUE)

logit simple nn xgb nn
logit 1.00
simple nn 0.07 1.00
xgb 0.25 0.03 1.00
nn 0.16 0.02 0.30 1.00
N 4

(b) PANEL B: SHAP (ABS VALUE)

logreg simple nn xgb nn
logit 1.00
simple nn 0.21 1.00
xgb 0.13 0.08 1.00
nn 0.09 0.03 0.13 1.00
N 2

(c) PANEL C: LIME (ALL VALUE)

logit simple nn xgb nn
logit 1.00
simple nn 0.00 1.00
xgb 0.09 0.00 1.00
nn 0.17 0.15 0.11 1.00
N 3

Note: The table shows results from the consistency test across different model types. Each cell shows the average fraction of
overlap across 4 features identified as the drivers for an adverse decision when two different models make predictions for the
same set of applicants. Panel a shows results for the tools using raw SHAP values. Panel b shows results for the tools using
absolute SHAP values. We average across the responses. 1 indicates perfect overlap (four features in common) and 0 indicates
no overlap (0 features in common). 0.25 implies that two responses have 1 feature in common; 0.5 implies that two responses
have 2 features in common; and 0.75 implies that two responses have 3 features in common. N denotes the number of
responses considered in that panel.
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4.6 EVALUATION: USABILITY

As a third dimension we now consider usability, that is, the ability to identify drivers that provide a rejected applicant
with a feasible path to acceptance within one year. There is growing interest in whether adverse action notices can
or should provide actionable information, rather than simply providing descriptive information. We first describe
how we evaluated usability and then present results.

Usability: the ability of a model diagnostic tool to provide actionable information that helps an applicant
subject to an adverse credit decision satisfy the criteria for approval within one year..

4.6.1 EVALUATION DESCRIPTION

USABILITY TESTS

We use three tests to evaluate the usability of model diagnostic tools for the purpose of providing actionable
explanations for a rejected consumer. The first test checks whether the proposed actions indeed lower the
prediction of default enough to overturn the adverse credit decision. The second test checks how feasible
to proposed changes are given what we know about typical changes in our data. Finally, we compare the
proposed actions to the principal drivers of an adverse credit decision.

We evaluate usability based on the following tests. Recall that each company was asked to provide a small set of
actions (preferably no more than four but not a hard limit) that a rejected applicant could take to obtain a positive
credit decision in the next 12 months. We first ask howmany of the suggested changes lead to an approval decision.
We obtain this information by computing model prediction after “implementing” the proposed changes in the data.
We can then determine whether the new prediction indeed drops below the 10% approval threshold.
We then ask how realistic the proposed changes are considering the observed changes in the data. We compute

additional statistics on a typical 12 month change observed in the data by drawing on additional data on the same
applicants 12 months and 24 months prior to their credit card application. Recall that this information was provided
to the participating companies as part of the usability tasks. We can then compute whether the proposed changes
lie in the center or the tails of the observed distribution of changes. If all proposed changes look extreme relative
to the changes typically observed in the data, we conclude that the suggested path is unlikely to be feasible for a
given applicant. Finally, we document how much the proposed changes differ from the drivers of the adverse credit
decisions identified in the first part of this analysis.
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4.6.2 USABILITY RESULTS

KEY FINDINGS

While there are tools that perform well on our fidelity tests, our usability analysis shows that these tools do
not necessarily do well in deriving actionable paths to acceptance. Changing only a few features in isolation
is unlikely to overcome a rejection, although the tools performed better on this task with simple models. If we
want to ensure that a proposed path to acceptance leads to a large enough drop in the predicted probability
of default in more complex models, we have to allow the proposed changes to either suggest many actions
and/or we have to allow the proposed changes to be very large (relative to what is observed in the data).
These results point to a fundamental challenge of describing feasible changes by focusing on a few features
in isolation, rather than in the context of their correlation and causal relationships with each other.

Table 8 shows summary statistics for the proposed changes that provide a path to loan approval. For the simple
Baseline Models, most approaches suggest an average of 7–8 changes per applicant. For the complex Baseline
Model, the average number of changes are much higher: 62 for the XGBoost model and 137 for the neural network.

The results in Table 8 highlight two important trade‐offs when it comes to usability, or feasible paths to ac‐
ceptance. If we want to ensure that a proposed path to acceptance leads to a large enough drop in the predicted
probability of default, we have to allow the proposed changes to either suggest many actions and/or we have to
allow the proposed changes to be very large (relative to what is observed in the data). We find that it is generally
challenging to generate paths to acceptance with only a few feature changes that also lie within feasible bounds of
change observed in the data.
Table 8 shows the average acceptance ratios after implementing the proposed changes. For the logit and simple

neural network models, respectively 80% and 66% of rejected applicants are approved. These paths on average
reduce the probability of default by 20–30 percentage points. However, there is significant heterogeneity across
model diagnostic tools. One tool achieves an acceptance rate of 100% for both models while other tools only reach
an acceptance rate of 6%and 28%, respectively. The high acceptance rates however come at the price of suggesting a
large number of changes that lie outside of the bounds observed in the data – 52% and 32% of changes, respectively.
For the XGBoost and Neural Network models, we find average acceptance rates of 36% and 27%, respectively.

Again, there is significant heterogeneity across tools. One tool induces acceptance rates of 98% and 73% for the
two complex models. The tools with the lowest acceptance rates, in contrast, only achieve acceptance rates of 7%
and 16%, respectively. High acceptance rates for the XGBoost and Neural Network models are attainable in our
setting only with a large number of changes (over 200 average changes per applicant for the XGBoost and over 500
changes for the Neural Network). The results for the Company Models exhibit acceptance rates around 30% with
two notable outliers – one acceptance rate close to 70% and the other close to zero.
Comparing these results to the perturbation test in the preceding section, we find that the changes observed

in the usability test are about 10x larger than the changes in predictions we documented in the fidelity tests in
Table 3. This increase in magnitude reflects two differences. First, many proposed changes exceed their plausible
historical ranges. Figure 1 shows the distribution of the proposed changes. The figure shows that there is little mass
in the center of the distribution, that is few proposed changes lie in the second or third quartile of typically observed
changes. A significant number of proposed changes exceed either the maximum or minimum changes observed
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Table 8: AAN: USABILITY

Avg. # of changes Ratio Avg. PD Fraction out‐
per applicant accepted change side bounds

Logit
Average 8 0.80 ‐0.24 0.27
Highest acceptance 4 1.00 ‐0.34 0.52
Lowest acceptance 4 0.06 ‐0.08 0.21
N 5

Simple NN
Average 7 0.66 ‐0.19 0.32
Highest acceptance 4 1.00 ‐0.27 0.32
Lowest acceptance 4 0.28 ‐0.07 0.11
N 4

XGBoost
Average 62 0.36 ‐0.09 0.25
Highest acceptance 235 0.98 ‐0.26 0.28
Lowest acceptance 4 0.07 ‐0.01 0.16
N 4

Neural net
Average 137 0.27 ‐0.06 0.43
Highest acceptance 538 0.73 ‐0.20 0.31
Lowest acceptance 4 0.16 ‐0.03 0.27
N 4

Company models
Alpha 4 0.67 ‐0.21 0.65
Beta 3 0.00 0.00 0.49
Gamma 4 0.33 ‐0.15 0.18
Delta 3 0.31 ‐0.17 0.01
Epsilon 3 0.27 ‐0.02 0.00

Note: The table shows results from the usability test for the drivers of an adverse credit decision. The first column shows the
average number of changes suggested per applicant. Ratio accepted refers to the fraction of rejected applicants for whom the
suggested changes lead to a reduction in default prediction large enough to bring them below the 10% approval threshold.
Average PD change describes the average change in the default prediction (in probability units) that results from the change.
Fraction outside bounds refers to the fraction of proposed changes that is greater (smaller) than the maximum (minimum) change
observed in the data. N refers to the number of responses we received for each model type. Highest acceptance refers to the
response that had the largest ‘ratio accepted’ while lowest acceptance refers to the response with the lowest ‘ratio accepted’.
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Figure 1: AAN: USABILITY
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Note: The figure shows the distribution of proposed changes for the rejected applicants relative to the typical changes
observed over a 12 month horizon in the data. 1st‐4th quartile show the fraction of proposed changes that fall in that
respective quartile of changes observed in the data. <Min and >Max show the fraction that exceed the minimum/maximum
change observed in the data. Each bar in the graph averages over all responses received for that model type. The company bar
averages over all Company Models.

in the data. This finding is particularly pronounced for the XGBoost and Neural Network models. In contrast, the
perturbation schemewe applied in the fidelity test in the preceding section always respected the bounds of the data.
Second, some diagnostic tools proposed many more than the four drivers that we changed as part of the fidelity test
in the preceding section. Altering a larger number of features also drives the larger changes in predictions observed
in this usability test.
To gain further insight into the provided changes, we consider two dimensions of consistency. The first two

columns of Table 9 show the degree of overlap between the two sets of responses that the participating companies
provided for the two disclosure tasks. The first set represents the four drivers of an adverse credit decision and the
second set represents the feasible path to acceptance. In other words, we show how often a company suggests
the same features for the same applicant across the two disclosure tasks. The second two columns of Table 9
then compare the overlap across the responses for the usability test only. In other words, we show how often
two different companies suggest the same feasible path for the same applicant. We exclude responses that did not
provide responses for both parts of the analysis from this table.
Table 9 shows that both types of consistency are low. The median overlap between the two disclosure tasks

suggests that about 40% of rejected applicants have no overlap in the drivers of an adverse decision and the path to
feasible acceptance. We find that considering two potential objectives to the adverse action disclosures – identifying
the primary basis for rejection and proposing feasible path to acceptance – lead to the identification of quite different
features. The median overlap between two different sets of feasible paths is even lower with a median overlap of
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Table 9: AAN: CONSISTENCY OF DRIVERS FOR USABILITY ANALYSIS

Consistency tasks 1‐2 Consistency across responses

Median Frac. of reject Median Frac. of rejects
overlap w/out overlap overlap w/out overlap

Logit 2 0.34 0 0.62
Simple NN 1 0.25 0 0.77
XGBoost 1 0.37 0 0.88
Neural net 1 0.36 0 0.82
N 4

Note: The table shows overlap of drivers across the two tasks in this study for the same response (first two columns) and across
responses (last two columns). Median overlap describes the number of drivers in common for a rejected applicant, with zero
indicating no overlap and four indicating perfect overlap. Fraction of rejects with no applicant reports the fraction of the 3000
rejects for which two responses do no have any drivers in common. All statistics are averaged by model type.

zero. A given pair of responses has on average no features in common for 60‐80% of rejects. These overlap numbers
are much smaller than those observed in our consistency tests in the disparate impact evaluation (as reported below
in Table 18). This finding suggests that the divergence in feasible paths to acceptance is greater than the divergence
in the identification of the primary driver of an adverse credit decision.
There are three important limitations to our analysis. First, one important limitation is that we did not extend this

analysis to test whether the features identified are in practice closely related – either because they belong to the
same feature family or are closely correlated in the data. Second, our sample of rejected applicants was randomly
drawn from the sample of rejected applicants in the training data. This approach implies that some rejects will likely
be far away from a 10% approval threshold and finding a feasible path to acceptancewould be challenging in practice.
The upside of the random draw is that we represent the whole spectrum of rejects in our analysis. Further breaking
down our results by marginal versus inframarginal rejects, that is rejects close and further away from the approval
threshold is a fruitful avenue for future research. Third, we work with an identical approval threshold of 10% for all
models. Because the models in our analysis differ in the distribution of predictions for the same set of rejects, a 10%
approval threshold represents different degrees of leniency (or target default rates).
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5 RESULTS: FAIR LENDING AND DISPARATE IMPACT

This section presents our evaluation of the participating model diagnostic tools with respect to fair lending and
disparate impact requirements. It consists of two main sections: (1) background and (2) empirical evaluation. The
former section provides an overview of relevant policy considerations, legal and regulatory expectations, and oper‐
ational considerations. The latter section first describes the fairness and disparate impact properties of the credit
underwriting models considered in this analysis. We then present our analysis that evaluates how well diagnostic
tools identify drivers of disparities and help lenders identify less discriminatory model specifications.

5.1 BACKGROUND

5.1.1 LEGAL AND REGULATORY OVERVIEW

Lenders are subject to broad anti‐discrimination requirements regardless of what type of model they use to predict
an applicant’s likelihood of default.2425 Two fair lending doctrines reflect these requirements: disparate treatment
and disparate impact.26 Disparate treatment focuses on whether lenders have treated applicants differently based
on protected characteristics, and generally prohibit consideration of race, gender, or other protected characteristics
in underwriting models. Disparate impact prohibits lenders’ use of facially neutral practices that have a dispropor‐
tionately negative effect on protected classes, unless those practices meet a legitimate business need that cannot
reasonably be achieved through alternative means with a smaller discriminatory effect.27 The legal analysis for
disparate impact has three parts:

1. Adverse Impact: A plaintiff (such as a consumer or a regulatory agency) must make an initial showing that
a particular act or practice causes a disproportionate adverse effect on a prohibited basis. This is typically
analyzed by looking at whether use of particular features or other lending practices cause approval rates or
pricing patterns to differ substantially by race, gender, or other protected characteristics;

2. Business Justification: In response, the creditor must then show that the practice furthers a legitimate business
need, such as that the variable helps to predict the risk of default; and

3. Less Discriminatory Alternative: To prevail on a claim, the plaintiff must then demonstrate that the legitimate
business need cited by the creditor can reasonably be achieved by using an alternative practice that would
have less adverse impact.

A finding of disparate impact discrimination thus depends on whether the statistical disparities are driven by factors
that lack a business necessity or by a showing that there is a less discriminatory alternative that does not sub‐
stantially reduce predictive power. This business necessity analysis generally involves: (1) identifying the relevant
24The Equal Credit Opportunity Act (ECOA) prohibits discrimination in “any aspect of a credit transaction” for both consumer and commercial

credit on the basis of race, color, national origin, religion, sex, marital status, age, or certain other protected characteristics, and The Fair Housing
Act (FHA) prohibits discrimination on many of the same bases in connection with residential mortgage lending.
25See 15 U.S.C. §1691(a) (also prohibiting discrimination based on the receipt of public assistance and the good faith exercise of certain rights

under federal consumer financial law); 42 U.S.C. §3605 (prohibiting discrimination on the basis of race, color, national origin, religion, sex, familial
status or disability).
26The Supreme Court has confirmed that both doctrines are available under the Fair Housing Act, but has not yet ruled on whether disparate

impact analysis applies under ECOA. See Texas Dep’t of Housing & Community Affairs v. Inclusive Communities Project, Inc., 576 U.S. 519
(2015). Federal regulations, agency guidance, and lower court decisions have recognized the doctrine under ECOA for decades, in part based on
legislative history. See, e.g.,12 C.F.R. §1002.6(a), 12 C.F.R. §1002.6(a), Supp. I, cmt. 1002.6(a)‐2
27For a general overview of the two doctrines and the ways that they overlap, see (Evans, 2017).
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factors, (2) determining whether those factors have a statistically significant relationship with creditworthiness, and
(3) determining whether such factors have an intuitive logical relationship with creditworthiness.28 Identification
of less discriminatory alternatives can take several forms, most of which begin with scrutinizing the contribution of
individual features to the relevant disparities. One option is to transform features that drive disparate impact. The
widespread use of debt‐to‐income ratio rather than income alone is an example of such a transformation. Where
such a transformation is not available, lenders may choose to omit the offending feature entirely, even if that sac‐
rifices all of its predictive value. These approaches to identifying, measuring, and mitigating disparate impact risk
implicitly require that models be sufficiently transparent to permit access to relevant information about the model’s
behavior.
In practice, determining whether disparities constitute an impermissible disparate impact requires thorough,

careful analysis and judgment. Given that credit histories for many racial and ethnic groups – due in significant part
to historical discrimination and its compounding effects29 – reflect higher credit default rates than whites (Avtar
et al., 2021; Emmons and Ricketts, 2016), developing a model that accurately predicts group‐level default requires
features that also differ, on average, between these groups. If analysis indicates that a given feature affects mi‐
nority groups differently than others but such disparities account for the difference in average credit default rates,
the lender will have to consider tradeoffs between fair lending risk and credit risk and weigh competing concerns:
a desire to minimize risk of discrimination and fair lending problems and a desire to avoid giving applicants loans
they are unlikely to repay and being criticized for lending practices that could be interpreted as both predatory and
unsound.

5.1.2 OPERATIONAL CONSIDERATIONS

Financial institutions rely on statistical analyses to help them comply with both legal fair lending doctrines.30 With
the advent of advanced prediction tools, there has been heightened interest in how these statistical tests and anal‐
yses can be adapted to complex models developed by machine learning algorithms, which often have large numbers
of features and capture non‐monotonic and/or non‐linear relationships in the data. For example, the identification
and management of features that may proxy for protected class status under both disparate treatment and disparate
impact theories of discrimination may require a high degree of transparency into how the models are built and how
they make predictions. There are also concerns that machine learning models may effectively reverse‐engineer
protected class status from correlations in data, even though consideration of such status is prohibited. Thus, par‐
ticularly where machine learning models rely on data from more varied sources or on more complex features, there
are open questions concerning whether lenders and regulators may need new tools and face new limitations in ef‐
forts to diagnose disparate impact.31 There is an ongoing debate in the machine learning community about how to
28SeeOffice of the Comptroller of the Currency, Bulletin 1997‐24: Credit ScoringModels: Examination Guidance (May 20, 1997); (“Developers

should be able to demonstrate that such data and information are suitable for the model and that they are consistent with the theory behind the
approach and with the chosen methodology.”)
29Advocacy groups often point to historical discriminatory lending practices as the basis for these default rates for minority groups. These

groups identify a form of label bias that results from the effects of minority borrowers being unfairly charged higher prices for credit, when they
could obtain it at all. If, for example, because of such discrimination, minorities have paid an average extra 5% relative to similarly situated non‐
minority borrowers, we would expect minorities to experience higher rates of default because of the burden of that higher pricing. When data
reflecting this pattern is later used to build a model, the model will likely reflect and perpetuate discrimination, because the reported defaults in
the training data do not properly measure true expected default for groups unfairly charged higher prices.
30For an overview of processes to asses disparate impact risks related to credit underwriting, see NAACP Legal Defense and Education Fund,

et al., Fair Lending Monitorship of Upstart Network’s Fair Lending Model: Report of the Independent Monitor (2021); NAACP Legal Defense and
Education Fund, et al., Fair Lending Monitorship of Upstart Network’s Fair Lending Model: Second Report of the Independent Monitor (2021).
31Historically, regulators have looked at whether particular features have an “understandable relationship to an individual applicant’s credit‐

worthiness” as well as a statistical relationship to loan performance in determining whether they meet a legitimate business need. See Office of
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define and measure fairness and whether awareness of protected class features can increase the accuracy and fair‐
ness of machine learning underwriting models (Kleinberg et al., 2018a). However, while there are certain methods
of debiasing that use protected class information in either pre‐, in‐, or post‐processing, which are accepted for use
broadly within the machine learning community and in other sectors, they may not be suitable for use in financial
services (Schwartz et al., 2022; Gill et al., 2020). Some lenders are concerned that these approachesmight be cited as
violations of the prohibition on disparate treatment and therefore may avoid such methods unless or until regulators
address this question directly in regulation or guidance.
Diagnostic tools like those evaluated in this research can be used to support compliance with fair lending re‐

quirements in a variety of ways.32 Some lenders may use such tools to identify the features or groups of features
that make the largest contributions in the model, so that they can assess the effect of transforming or removing
those features to document that they have explored the business necessity of individual features and taken pains
to identify less discriminatory alternatives. This approach is a common and accepted fair lending risk management
practice with incumbent logistic regression underwriting models, given the small number of variables and simple
structures in those models.
Generating a list of top drivers of disparate impact may also be useful for users of machine learning models

– to help developers identify those features and interrelationships identified by the algorithm that require close
investigation to document their fair lending impact and justify their use. Information about the relative effect of dis‐
parities (i.e., the ranking of features by disparities), when used in combination with measures of feature importance,
is valuable for identifying groups of features that can be added or dropped to decrease disparate impact. Further,
qualitative feature reviews may continue to be important for reasons beyond disparate impact risk management,
including the need to identify whether features important to the model’s prediction could expose lenders to se‐
vere reputational harm even if not technically illegal and to identify features that are tantamount to proxies under
disparate treatment theories of discrimination.
Lenders can also use model diagnostic tools like those in this evaluation to produce fairer alternative models

by reweighting features, using adversarial models, or other in‐processing steps. These approaches can help lenders
identify a set of possible models that trade off fairness and predictive performance (Hall et al., 2021; Schmidt and
Stephens, 2019). In practice, lenders presented with these alternative model specifications must choose between
different fairness and predictive performance outcomes with little explicit guidance under fair lending laws. Sub‐
stantial uncertainty about how tomake these choicesmay be a significant factor in chilling adoption of newmodeling
technologies or data sources.

5.2 EMPIRICAL EVALUATION: SUMMARY

This section describes results from our fair lending and disparate impact evaluation. Our analysis proceeds in two
steps. In the first step, we evaluate the fairness and disparate impact properties of the Baseline and Company
Models. In the second step, we evaluate the diagnostic tools used to identify the features or combination of features
that drive disparities in a prediction model.
Our analysis can help answer three high‐level questions: (1) how large are disparities generated in “out‐of‐the‐

box” prediction models trained on credit bureau data without knowledge of protected class status; (2) how well can
we describe features that drive disparities in these models; and (3) does this information help generate alternate

the Comptroller of the Currency, Bulletin 1997‐24: Credit Scoring Models: Examination Guidance (May 20, 1997).
32These approaches used by companies participating in this study are described in greater detail below. See Section 5.4 below.
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model specifications with lower disparities and similar predictive performance.
Our analysis focuses on a single protected class indicator (racial/ethnic minority) to simplify the analysis and

to sidestep, for now, uncertainty about regulatory expectations regarding firms’ efforts to mitigate bias in models
where a proposed alteration of the model has differential effects (in size and/or direction) for different protected
class groups.33 Our evaluation methodology can easily be applied to more dis‐aggregated racial/ethnic groups as
well as to other protected class characteristics, and we expect the general insights to be applicable when the analysis
is run to incorporate other protected class characteristics.

Fairness and Disparate Impact Properties We find the following results with regards to the fairness and disparate
impact properties of the credit underwriting models in our study.

KEY FINDINGS: FAIRNESS PROPERTIES

As expected given constraints on our model development resources, all models exhibit relatively large dis‐
parities compared to industry standards associated with typical production‐grade models. No single model
performs best across a range of possible fairness metrics, but complex models consistently outperform sim‐
pler models that rely on relatively few features both in terms of fairness and predictive performance. The
relative patterns of predictive performance and adverse impact are preserved when evaluating underwriting
models on a held‐out data set with a different applicant composition.

1. All models in this study are associated with relatively large disparities across a range of fairness metrics. These
disparities are likely larger than those associated with typical production‐grade models that lenders use to
make credit decisions since our models represent a starting point prior to undergoing extensive fair lending
testing and revision.34 Furthermore, our results are specific to the given applicant distribution and approval
threshold, and consider only unadjusted disparities that do not correct for compositional differences across
groups.

2. Models differwith respect to their fairness properties across differentmetrics, and there is no single bestmodel
across a range of possible fairness metrics. This finding is consistent with the inherent trade‐offs between
different fairness metrics, as suggested by prior theoretical work on algorithmic fairness (Kleinberg et al., 2016;
Chouldechova, 2017).

3. More complex models exhibit higher predictive performance and smaller disparities across all metrics relative
to most simple models considered in our analysis. Comparisons among the complex models suggest trade‐
offs between predictive performance and fairness properties, although the magnitude of these trade‐offs is
small. That is, complex models produced by a variety of different machine learning algorithms on the same
data exhibit very similar performance for both predictive accuracy and fairness.

4. The relative patterns across prediction accuracy and adverse impact are largely preserved when evaluating
the same models on a data set that has a different composition of applicants. We did not observe that simple
models extrapolate to new contexts more robustly than complex models do, in the sense that both predictive

33Our data set did not contain protected class information. For more information on our imputation methodology, see Section 3.3 above and
Appendix C.
34Stakeholder feedback broadly supports this characterization, although our use of a single minority classification obscures direct comparison.
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accuracy and adverse impact can change by a similar, or even larger, amount. This finding is in tension with
prevailing experience reported by some lenders and other stakeholders.

Model Diagnostic Tools in Fair Lending Analysis We evaluate tools for identifying drivers of disparities on three
dimensions: (1) fidelity, that is, the ability to reliably identify features that relate to disparities in model predictions
or decisions; (2) consistency, that is, the degree to which tools identify the same drivers; and (3) usability, that is,
the ability to identify information that enables lenders to comply with anti‐discrimination requirements regarding
business justification and less discriminatory alternatives. Concretely, we evaluate two dimensions of usability. The
first dimension asks to what extent identifying drivers of disparities helps us to create alternative models that have
smaller disparities and comparable predictive performance. The second dimension asks howmuch drivers of dispar‐
ities generalize to settings in which the model is applied to a different composition of applicants.

KEY FINDINGS: MODEL DIAGNOSTIC TOOLS

Among the model diagnostic tools we evaluated, some tools can identify features that make significant con‐
tributions to disparities in the default predictions produced by underwriting models. These tools are able to
reliably identify features that are related to the model’s disparities such that equalizing the distribution of
these features across groups or perturbing these features in a favorable direction sizably reduces disparities
on the basis of protected characteristics. These tools are also able to identify features that, when changed
in a favorable direction, reduce predicted disparities by more than randomly chosen or even closely corre‐
lated features. Careful interpretation of the output of model diagnostic tools is central to their effective
use in fair lending analysis – in particular, attempts to change model outputs by manipulating a small set of
key features is challenging when we do not also account for interdependent or correlated attributes. While
model diagnostic tools are able to identify plausible drivers of model behavior, these descriptions do not
automatically translate into straightforward ways of improving model properties. Strategies that leave out
identified drivers of disparities do not lead to revised models that have significantly smaller disparities in
predicted defaults but often result in substantial performance deterioration. In contrast, tools that rely on
some degree of automation can do better in generating a menu of models with reduced disparities in default
predictions, while minimizing performance losses. Importantly, these more automated tools generalize well
to never‐seen‐before settings that have a different applicant composition.

We find the following main results.

1. There are a set of diagnostic tools that exhibit high fidelity across both simple and complexmodels. These tools
are able to reliably identify features that are related to the model’s disparities, in the sense that equalizing the
distribution of these features across groups or perturbing these features in a favorable direction sizably reduce
disparities across protected classes.

2. Lender choices about which diagnostic tools to use and how to deploy them can be important to achieving
fair lending goals, particularly for complex models. The high‐fidelity tools combine information about how a
feature is correlated with protected class and how important the feature is for the model’s prediction (‘feature
importance’). But there are also diagnostic tools that perform poorly on the fidelity tests. This latter group of
tools either only uses information about whether a feature correlates with protected class (but do not consider
feature importance) or uses an experimentation strategy based on dropping features that drive disparities
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(which is often called “leave‐one‐feature‐out” analysis). The tools that perform best exhibit a substantial, but
not perfect, degree of consistency with each other, often agreeing on at least 5 out of 10 drivers of disparities.
The low‐fidelity approaches in contrast have almost no drivers in common with each other. Unsurprisingly,
high and low fidelity tools also do not exhibit much agreement with each other when identifying drivers of
disparities.

3. Careful interpretation of the output of model diagnostic tools is central to their effective use in fair lending
analysis. Our two fidelity tests show that it is possible to describe the drivers of disparities in terms of a few
key features as long as we do so in the context of their feature correlations. Our fidelity test based on feature
reweighting implicitly accounts for these correlations when equalizing the distribution of a particular driver of
disparities. Correspondingly, we find large reductions in disparities as a result. In contrast, our perturbation
test manipulates drivers of disparities in isolation and exhibits smaller reductions in disparities. In addition, we
find that tools that perform equally well often identify a different set of features that drives disparities. Again,
this reflects that single tool should be regarded as having identified ‘the’ drivers of disparities.

4. While model diagnostic tools are able to identify plausible drivers of model behavior, these descriptions do
not automatically translate into straightforward ways of improving model properties. These findings emerge
from our usability analysis that asks how different diagnostic tools contribute to the search for alternate model
specifications with smaller disparities and, if possible, similar predictive performance. We find that automated
methods that do not depend on evaluating and managing individual features outperformmethods that depend
on generation of a list of key drivers of disparities. More specifically, we find that the ability to explain what
drives disparities does not automatically help lenders generatemodels that have smaller disparities in predicted
default when that information is used mechanically. A strategy that leaves out drivers of disparities does
not lead to revised models that have significantly smaller disparities in predicted defaults but often leads to
substantial performance deterioration. In contrast, automated tools that do not require ex ante knowledge of
what drives disparities do better in generating amenu ofmodels with reduced disparities in default predictions,
while minimizing performance losses. These automated tools differ in whether and how they use protected
class information in the LDA search, reflecting an evolving regulatory landscape.35

Taken together, the differences between simple and complex models in our study suggest that adding complexity
does not necessarily increase disparities, but can lead to improvements in both predictive power and fairness given
current capabilities for identifying less discriminatory alternatives. These findings are subject to the limitations of
our models, which do not reflect significant manual feature curation and improvements from iterative revision and
testing as a lender’s would. More importantly, the ability to realize the promise of improving both predictive power
and reducing disparities depends on a series of complex and interrelated choices that individual lenders much make
about what type of machine learning model to build, how much complexity to enable in that model, and how to
manage transparency and fairness considerations in model development and model monitoring.

5.3 FAIRNESS AND DISPARATE IMPACT PROPERTIES

35As noted above, concern about inclusion of features that can pose reputational harm even if they are not illegal may mean that lenders using
automated methods to generate LDAs might still value the ability to perform qualitative feature reviews and therefore place value on the ability
to identify key drivers of adverse impact. The same is true for reviews to identify proxies under disparate treatment theories.
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5.3.1 DESCRIPTION OF FAIRNESS METRICS

There is a robust debate in the data science and machine learning communities about the many ways to define
fairness in the context of prediction and classification models. Metrics differ by what information they incorporate,
which can include model predictions, approval decisions, and default outcomes (‘labels’) (Verma and Rubin, 2018;
Pessach and Shmueli, 2020).36

TYPES OF FAIRNESS METRICS

There are three types of fairness metrics considered in this study. Threshold‐based metrics consider dispari‐
ties in model decisions after applying a (hypothetical) approval threshold to the model’s prediction. Examples
include the Adverse Impact Ratio (AIR) and differences in false positive rates (FPR) and true positive rates
(TPR). Non‐threshold based metrics consider disparities in model predictions. Examples include statistical
parity, conditional statistical parity, and the standardized mean difference (SMD). Hybrid metrics include dif‐
ferences in predictive performance, e.g. based on the AUC metric of predictive performance. This study
focuses on the AIR and SMD metrics for most of the analysis.

Below we offer an overview of fairness metrics we consider in this analysis.

Threshold‐based metrics Threshold‐based metrics consider a (hypothetical) approval cutoff that is applied to the
predictions of amodel. One advantage of threshold‐basedmetrics is that they are often very intuitive and correspond
to a realistic use case. These metrics focus on relevant outcomes by considering the approval threshold used in
practice. Disparities in extreme tails of the model might not matter much for observed disparities in outcomes.
These metrics are thus closer to the meaning of fairness intended by disparate impact requirements.
The downside of threshold‐based metrics is that they are specific to a decision threshold. If lenders change the

decision threshold, the measured value of disparities also changes. For this reason, larger lenders often test multiple
cutoffs using adverse impact ratio (“AIR”) if the usage of the model is uncertain. We focus on a decision threshold for
each model that targets a predicted default rate of 5% among approved applicants. The implied approval thresholds
vary from 15‐25% for the Baseline Models and from 14‐20% for the Company Models.
We note that these metrics can also be sensitive to changes in applicant distribution, as well as strategic consid‐

erations related to the relevant product, business line, or loan portfolio. A model can appear to have low disparities
when faced with an applicant pool that contains many minority applicants who are assigned low risk scores by the
model. That same model can have high disparities when faced with an applicant pool that contains many minor‐
ity applicants who are assigned high risk scores by the model and consequently rejected. This sensitivity property
is not specific to threshold‐based metrics, but instead applies to any unconditional metric. It can complicate the
monitoring of disparate impact risks and the articulation of universally applicable standards.
We consider the following threshold‐based fairness metrics.

1. Adverse impact ratio (AIR). Thismetric represents the industry standard for lenders evaluating disparate impact
in a variety of contexts including credit and hiring. It is defined as the ratio of the acceptance rate for the
minority group to the acceptance rate of the majority group. AIR values closer 1 correspond to more parity.

36For more extended explanation of individual fairness metrics discussed in this section, see Section 5.2 and Appendix C of our Market & Data
Science Context Report FinRegLab (2021).
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There is no set standard for appropriate AIR values in part due to recognition that appropriate target val‐
ues will vary based on a variety of factors including protected class under consideration, data, and particular
product and market conditions. However, AIR above 0.8 is a frequently‐used industry benchmark, although
stakeholders at some firms report that 0.9 may be more common as an internal risk management benchmark.

2. Differences in True Positive Rates (”TPR”) or False Positive Rates (”FPR”). The TPR is the fraction of defaults
that are correctly predicted while the FPR refers to the fraction of non‐defaults that are incorrectly predicted
as defaults. Unlike the AIR, these measures also take outcome labels (here, defaults) into account, not only
decisions (here, approvals). Values closer to zero correspond to more parity.

In practice, lenders may use some or all of these threshold‐based metrics jointly in evaluating model fairness. Con‐
sidering AIR in the context of TPR and FPR allows practitioners to determine whether greater approval rate parity
(AIR) is gained at the expense of approving people who have insufficient ability to repay the loan, which is reflected
in decreased TPR.

Non‐threshold‐based metrics Another class of metrics is based on the underlying model predictions as opposed
to discrete classifications or implied decisions of the model. The three key metrics we employ are statistical or
demographic parity, conditional statistical parity, and standardized mean difference.

⇒ Statistical or demographic parity is defined as the difference in the average predicted probabilities by protected
classes. The closer to zero, the more parity.

⇒ Conditional statistical parity follows the same idea as statistical parity but ‘controls’ for the impact of key
features that might skew the probability distribution across protected class. For example, if one group has
more bankruptcies and bankruptcy is an important feature in themodel, wemight want to control for the effect
of bankruptcy by effectively comparing model scores across applicants with similar number of bankruptcies.
We implement conditional statistical parity by first identifying the top‐5 global features based on ordering
features by their absolute SHAP feature importance. We then split each of these five features at the median
feature value creating two bins. We compute the average model prediction in each of the 32 sub‐samples
defined by the top‐5 feature bins. We compute the statistical parity metric in each sub‐sample and finally
take the weighted average across sub‐samples, with the weights representing the number of applicants in that
sub‐sample across groups. The closer to zero, the more parity..

⇒ Standardized mean difference (“SMD”) is a scaled version of statistical parity that is widely used by industry
in fair lending compliance, as well as in other anti‐discrimination contexts like employment. It is defined as the
average difference in predictions between protected classes, divided by the standard deviation of the model
predictions. The closer to zero, the more parity.

Hybrid metrics There are some additional metrics that combine model predictions and decisions but are not
threshold‐based. A key example of such a hybrid metric is AUC parity.37

⇒ AUC parity is defined as the difference in predictive performance as measured by AUC by protected class. In
principle, we could define similar parity metrics with regard to other measures of model performance. Consid‐
ering parity in performance metrics is important because models can fulfill some of the above fairness metrics

37Area under the curve (“AUC”) provides an aggregate measure of performance across all possible classification thresholds. AUC can be inter‐
preted as the probability that the model ranks a random positive example more highly than a random negative example.
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and yet be differentially predictive across groups. Differences in predictive performance induce more classi‐
fication mistakes – more incorrect rejections and/or incorrect acceptances – among protected classes. This
inequity can drive differences in credit misallocation and approval rates across groups (Blattner and Nelson,
2021).

Fairness metrics in this report We focus on the AIR and SMD metrics in our evaluation of particular diagnostic
tools to represent one threshold‐based and non‐threshold based metric. We chose these metrics since they are
commonly used inputs in disparate impact analysis in the United States. For consumer lenders in the United States,
law, regulation, and agency guidance define processes for identifying and measuring fair lending risks. Whether
a particular statistical disparities constitutes an impermissible disparate impact is a legal conclusion based on the
three‐part analysis outlined in Section 5.1. While this analysis begins with a statistical fairness assessment, such a
conclusion depends on a judgmental, multi‐stage analysis rather than the mechanical application of a statistical test.
For this reason, we generally refer to disparities or adverse impacts, rather than to disparate impact, throughout this
study.

5.3.2 RESULTS: FAIRNESS PROPERTIES

KEY FINDINGS: FAIRNESS PROPERTIES

We present four main results. First, as expected, the models in this study exhibit relatively large disparities
across a range of fairness metrics. However, these disparities are likely larger than those associated with typ‐
ical production‐grade models that lenders use to make credit decisions since our models represent a starting
point prior to undergoing extensive fair lending review. Second, models differ with respect to their fairness
properties across different metrics, and there is no single best model across all fairness metrics considered
herein. Third, more complex models exhibit higher predictive performance and smaller disparities across all
metrics relative to most of the simple models considered in our analysis. Fourth, the relative patterns across
prediction accuracy and adverse impact are largely preserved when evaluating the same models on a data
set that has a different composition of applicants.

We evaluate the fairness properties of both the Baseline Models and six Company Models. We evaluate these
properties on test data that was drawn from the same population as the data used to train the Baseline Models
and the Company Models. To understand how the fairness properties of the models generalize to a context with
a different composition of applicants, we also evaluate all models on a second test data set (the ‘deployment’ data)
that over‐sampled credit card applicants from geographies that have a higher proportion of Black and Hispanic
households.

Fairness Performance We find that all models in the study are associated with relatively large disparities across
all metrics. Table 10 reports fairness metrics for both the Baseline Models and Company Models. We find that
disparities are both large and relatively similar across models. The notable outliers are the simple Baseline Models
that perform less well across several fairnessmetrics. At an approval threshold that targets a predicted default rate of
5% among approved applicants, all models have adverse impact ratios (AIR) of around 0.7 (we report the associated
approval thresholds in column 1 of Table 10).
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We note that these results are not representative of values that would result from production‐grade models.
Neither the Baseline Models nor the Company Models were subjected to the kind of extensive fair lending compli‐
ance work that lenders would conduct prior to use in this evaluation and that we use a form of in Section 3.4 to
assess how well the tools support identification of less discriminatory alternatives. The high disparities may also
reflect persistent, historical differences in the availability and quality of credit histories for different racial groups in
the US and the associated underlying financial and economic disparities. Furthermore, our results are specific to the
given applicant distribution and approval threshold, and only consider unadjusted disparities that do not correct for
compositional differences across groups.
Figure 2 shows how the AIR metric changes as we vary the approval threshold with each line representing one

model. The figure shows that AIR metrics increase to 0.8 at approval thresholds of around 30% to 40%. An AIR
of 0.8 is commonly considered an acceptable target for managing disparate impact risks. However, we note that
these approval thresholds are not directly comparable across models since the distribution of default predictions
differ across models. For reference, an approval threshold of 40% corresponds to default rates of 10‐12% in our
data. SMD statistics are close to 0.6 suggesting a significant degree of disparities. SMD values of 0.5 are typically
considered medium to large values of disparities with acceptable values being closer to 0.2.

Table 10: FAIRNESS METRICS

Model Thres‐ AIR Statistical Std. mean Cond. stat. ∆ TPR ∆ FPR ∆ AUC
hold parity dif parity

Ideal value 1 0 0 0 0 0 0
Direction min/maj min‐maj min‐maj min‐maj min‐maj min‐maj maj‐min
Baseline Models

Logit 0.15 0.66 0.10 0.57 0.02 0.09 0.19 0.06
Simple NN 0.20 0.68 0.09 0.56 0.01 0.09 0.19 0.05
XGBoost 0.20 0.73 0.12 0.57 0.02 0.08 0.16 0.05
Neural Net 0.25 0.81 0.10 0.55 0.01 0.10 0.11 0.05

Company models
Alpha 0.19 0.72 0.12 0.56 0.02 0.08 0.17 0.05
Beta 0.20 0.73 0.12 0.57 0.02 0.08 0.16 0.05
Gamma 0.20 0.73 0.12 0.57 0.02 0.09 0.16 0.05
Delta 0.19 0.73 0.12 0.57 0.02 0.09 0.16 0.05
Epsilon 0.14 0.68 0.10 0.56 0.03 0.08 0.19 0.05
Zeta 0.18 0.70 0.11 0.58 0.01 0.07 0.18 0.05

Note: The table shows results for fairness metrics across both the Baseline Models and models built by participating companies.
Please see text for the definition of each metric. All values are computed on the test data set. The ideal value row describes the
value if there is perfect fairness. Direction describes the direction of the difference (or ratio) to facilitate interpretation. ‘Min’
denotes the minority group and ‘maj’ denotes the non‐minority (or majority) group. All threshold‐based metrics use an approval
threshold that targets a 5% predicted default rate among the approved applicants for that model.

Trade‐offs across fairnessmetrics Our second finding is that models differ with respect to their fairness properties,
and there is no single best model across all fairness metrics considered herein. This finding suggests that there are
indeed inherent trade‐offs between different fairness metrics, as suggested by prior theoretical work in this area
(Kleinberg et al., 2016; Chouldechova, 2017). Figure 3 shows a graphic representation of five key fairness metrics
across the four Baseline Models and the six Company Models. All metrics are standardized such that 0 corresponds
to the least fair and 1 to the fairest in the set of models. Table 11 further shows the correlation matrix across the
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Figure 2: ADVERSE IMPACT RATIO BY THRESHOLD
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Note: The figure shows the adverse impact ratio as a function of the approval threshold. Each line corresponds to a model. All
statistics are computed on the test set. Panel a shows the Baseline Models and panel b shows the Company Models.

standardized fairness metrics. Figure 3 shows that the various metrics rank the models somewhat differently, so
that no one model is ranked consistently across all metrics as being the most fair.
However, the magnitude of these differences is small, suggesting that most of the models are clustered around

similar magnitudes of fairness. For the simple Baseline Models, these differences are larger than for more complex
models, indicating that simple models are associated with greater disparities for many of the metrics. We note that
this finding may be contrary to industry experience with production‐grade simple models. This may reflect a variety
of factors, including that incumbent underwriting models reflect approaches developed and features selected over
several decades and that each successive iteration had to meet fairness requirements to be put into production. As
a result, the results using our models may not generalize well.
We find high correlations between the AUC and TPR and FPR statistics. This correlation may make some sense

given that the AUC combines the information from the TPR and FPRmetrics, albeit at a specific threshold. However,
TPR and FPR reflect different aspects of themodel and thus exhibit a low correlationwith each other. The AIRmoves
closely with the FPR differences and SMD statistic.

Fairness andPredictivePerformance More complexmodels tend to have higher predictive performance and smaller
disparities relative to the majority of simple models. Comparisons among the complex models suggested trade‐offs
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Figure 3: STANDARDIZED FAIRNESS METRICS
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Note: The figure shows different fairness metrics across both Baseline and Company Models. Company Models are
anonymized. All metrics are standardized to range from 0 and 1 in the set of models. An increasing metrics corresponds to more
fairness, that is, more parity across groups.

Table 11: FAIRNESS METRICS: CORRELATION

AIR SMD Cond. stat. parity ∆ FPR ∆TPR ∆ AUC

AIR 1.00
SMD 0.55 1.00
Cond. stat. parity 0.03 ‐0.15 1.00
∆ FPR 0.86 0.10 0.20 1.00
∆ TPR ‐0.12 ‐0.84 0.09 0.31 1.00
∆ AUC 0.39 ‐0.19 0.28 0.47 0.53 1.00

Note: The table shows correlations across the standardized fairness metrics across both the Baseline Models and models built
by participating companies. The standardization ensures that higher values are associated with more fairness and all metrics
range from 0 to 1. Please see text for the definition of each metric. All values are computed on the test data set. All
threshold‐based metrics use an approval threshold that targets a 5% predicted default rate among the approved applicants for
that model.

between predictive performance and fairness, though the differences are relatively small. Figure 4 shows howmodel
predictive performance and adverse impact compare across the set of models in this study. Across both AIR and
SMD metrics, we find that the simple Baseline Models, perform less well in terms of both adverse impact and pre‐
dictive performance. However, one of the simpler models built by a participating company has comparable fairness
and predictive performance to some of the more complex models. This finding suggests that how simpler models
are constructed matters more for fairness/predictive performance than in the case of complex models. The higher
adverse impact of the Baseline Simple Models might reflect that models with a smaller number of features will have
features that carry more weight with respect to determining the model’s prediction. In other words, feature selec‐
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Table 12: DI: DEPLOYMENT DATA
Baseline Deployment

Train Test Train Test

Fraction minority 0.22 0.20 0.28 0.28
Default rate
Minority 0.21 0.22 0.34 0.34
Non‐minority 0.11 0.13 0.19 0.19
∆ default rate 0.10 0.09 0.15 0.15
N 312,715 229,722 312,715 337,737

Note: The table shows summary statistics for the baseline and deployment data set

tion might have resulted in features that have high predictive power but that also exhibit significant correlation with
protected class. In contrast, complex models distribute more weight on features that might contain similar predic‐
tive information but are less correlated with protected class. Alternatively, these differences in performance may
be driven by under‐fitting: by extrapolating simpler, mis‐specified models with global trends across all applicants,
differences between groups that differ in their features may be overstated.
In contrast, the complex models trace out a frontier that trades off predictive performance and adverse impact,

although the magnitude of this trade‐off is small. In other words, there is little difference between the models that
have the strongest predictive performance and the models that have the lowest adverse impact. For example, the
second row of Figure 4 shows that the model with the highest predictive power has an AUC of .87 and a SMD
statistic of .57, while the model with the best adverse impact performance has an AUC of .86 and a SMD statistic
of .55. Inspecting the AIR metric, we find even smaller trade‐offs. In the figure, we apply the approval threshold
that target a 5% predicted default rate among approved applicants. Almost all complex models cluster on the same
performance‐adverse impact point – the exception appears to be the neural network in the set of Baseline Models,
which performs much better on adverse impact with little sacrifice in predictive performance. Using a more lenient
approval threshold of 50%, we find more dispersion in adverse impact across the complex models. Interestingly,
here we find very little trade‐off in predictive performance.

Fairness and Performance on the Deployment Data Finally, we find that the relative patterns of performance
across prediction accuracy and adverse impact were largely preserved when evaluating the same models on a data
set that has a different composition of applicants. We did not observe that the simple models extrapolate to new
contexts more robustly than complex models do, in the sense that both predictive power and adverse impact can
change by a similar or even larger amount. This finding is in tension with prevailing experience reported by some
lenders and other stakeholders. To understand how the fairness properties of the models generalize to a context
with a different composition of applicants, we built a second data set (the ‘deployment’ data) that over‐sampled
credit card applicants from geographies that have a higher proportion of minority applicants. Table 12 shows basic
summary statistics for this deployment data set. Compared to the test data, the fraction of minority applicants
increases from 20 to 30% and the default rate increases in both groups. It also increases the average differences in
default rate between both groups from 10% to 15%.
Figure 5 shows the adverse impact and performance metrics of the Baseline Models and Company Models on

both the test and deployment test set. For this exercise, the models were not re‐trained but simply evaluated on two
different test data sets. We use the same model‐specific AIR thresholds as in Figure 4. Both Baseline Models and
Company Models exhibit higher adverse impact and lower predictive performance on the deployment test data set.
However, the relative patterns of performance across prediction accuracy and adverse impact are largely preserved.
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Figure 4: ADVERSE IMPACT AND MODEL PERFORMANCE
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Note: Each panel of the figure shows a scatter plot depicting the trade‐off between model performance and adverse impact on
the test data. Each row shows a different statistic for identifying disparities. The first row shows AIR using a model‐specific
approval threshold (see Table 10) and the second row shows the SMD statistic. The first column groups models by whether the
model is simple or complex. The second column groups models by whether the model was built by the research team (Baseline
Model) or by a participating research company. Note that higher AIR values correspond to lower adverse impact (perfect parity
corresponds to an AIR equal to 1). Lower SMD values correspond to lower adverse impact. We flipped the SMD signs such that
points further to the right always correspond to models with lower adverse impact across all figures. The y‐axis across all panels
is the ROC AUC, with 1 indicating the best possible predictive performance of a model.
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Figure 5: ADVERSE IMPACT AND MODEL PERFORMANCE: DEPLOYMENT
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Note: Each panel of the figure shows a scatter plot depicting the trade‐off between model performance and adverse impact on
the test and deployment test data. Each panel shows a different combination of adverse impact and split by model
characteristic. We group models either by whether the model is simple or complex or by whether they are Baseline Models
generated by the research team or models generated by the participating companies. Note that higher AIR values correspond
to lower adverse impact (perfect parity corresponds to an AIR equal to 1). We show results both for a model‐specific AIR
threshold (see Table 10). Lower SMD values correspond to lower adverse impact. We flipped the SMD signs such that points
further to the right always correspond to models with lower adverse impact across all figures. The y‐axis across all panels is the
ROC AUC, with 1 indicating the best possible predictive performance of a model.
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The outliers are some of the simple models that have less adverse impact on the deployment test data than on
the original test data when considering the SMD metric. For example, row 2 of Figure 5 shows that while predictive
performance of the Baseline simple models declines on the deployment data set, the adverse impact performance
improves. This property appears to be driven by the behavior of predictions among higher‐risk applicants.
Notably, we do not observe that simple models extrapolate to new contexts more robustly than complex models

do, in the sense that both predictive power and adverse impact can change by a similar or even larger amounts.

5.4 PARTICIPATION DETAILS AND DIAGNOSTIC TOOLS

In the second portion of our analysis, we evaluate howwell diagnostic tools identify drivers of disparities. Unlike the
preceding section, our focus is now solely on the AIR and SMDmetrics that are the focus of the three‐step disparate
impact analysis, which is at the core of legal and regulatory anti‐discrimination requirements applicable to lenders
in the United States.
We evaluate the diagnostic tools’ outputs on three dimensions: (1) fidelity, that is, the ability to reliably identify

features that are in fact related to a model’s adverse impact; (2) consistency, that is, the degree to which different
tools identify different drivers for the same model and to which the tools identify different drivers for different
models; and (3) usability, that is, the ability to identify information that enables lenders to comply with the goals
and purposes of consumer protection regulation. Concretely, we evaluate two dimensions of usability. The first
dimension asks to what extent identifying drivers of adverse impact helps us to create alternative models that have
smaller disparities but, if possible, comparable predictive performance. The second dimension asks howmuch drivers
of adverse impact generalize to settings in which the model sees a different composition of applicants.
Our results show that there is a set of diagnostic tools that exhibit high fidelity across both simple and complex

models. That is, these tools appear to be able to reliably identify features that are related to the model’s adverse
impact. These tools combine information about how a feature correlates with protected class status and how im‐
portant the feature is for the model’s prediction. The tools that perform best exhibit a substantial, but not perfect,
degree of consistency with each other, often agreeing on at least 5 out of 10 drivers of disparities. The tools that
perform poorly in contrast have almost no drivers in common. This latter group of tools either only uses information
about whether a feature moves together with protected class (but does not consider feature importance); or uses
an experimentation strategy based on a leave‐one‐feature‐out analysis. Unsurprisingly, high and low fidelity tools
also do not exhibit much agreement with each other in drivers of disparities.
Our findings to date suggest that the traditional nexus between being able to identify key drivers of disparities

and using that information for mitigationmay be less applicable to managing disparate impact risks in machine learn‐
ing underwriting models. Methods that rely on more automated approaches in their search for less discriminatory
alternative models offer a notable contrast. These approaches differ in whether and how they use protected class
information in the search for and construction of less discriminatory models. Complex models in combination with
tools that rely on some degree of automation can produce a menu of model specifications that efficiently trade
off fairness and predictive performance because they assess a broader range of features and incorporate fairness
considerations into the model’s development from the start.

5.4.1 DESCRIPTION OF TASKS

Participating companies were asked to complete the following tasks with regard to fair lending and disparate impact.
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1. First, each company was asked to provide the ten most important drivers of disparities for each of the Baseline
Models as well as their Company Model(s) where applicable. Each company was given information on a single
protected class indicator for the training data (see Section 3.3 for details how this indicator was constructed).
We repeated this analysis on a second data set (‘deployment data’) that purposely over‐sampled from regions
with high proportions of households of color to test how the results generalize to an environment with a
different applicant composition.

2. Second, after identifying drivers of disparities, each company was asked to provide recommendations on al‐
ternatives to the Baselines Models that would have lower adverse impact but similar predictive performance.
This task approximates how many of these companies would interact with clients in helping them identify and
mitigate bias in underwriting models. We refer to this ask as a search for less discriminatory alternative (LDA)
models. We asked for three sets of LDA recommendations: One based on analysis of the models’ performance
in processing the baseline training data with protected class information available for the analysis; one based
on the models’ performance in processing the deployment training data but withholding protected class infor‐
mation; and finally one based on the models’ performance in processing the deployment training data but with
protected class information available for the analysis.

5.4.2 PARTICIPATION DETAILS

Six out of seven companies participated in the first task by computing drivers of disparities, with several compa‐
nies providing two separate responses. In addition, we built three open‐source approaches to identify key drivers
of disparities for purposes of the first task. Companies that built their own credit underwriting models also pro‐
vided drivers of disparities for their own models. Three out of six companies provided drivers of disparities on the
deployment data.
Five out of seven companies participated in the second task and provided recommendations for less discrim‐

inatory alternative models. Companies responded to this task in various ways, given operational challenges and
resource limitations. For example, one company limited itself to conducting LDA analysis on only features that
were identifiable given masking requirements from our data vendor, so that their personnel could review the anal‐
ysis at the feature level. Since some of the masked variables excluded from their LDA analysis were important in
the model, this affected what their LDA analysis could achieve. Two companies ran the LDA search in‐house and
provided predictions from the resulting models. For the remaining three company responses, we implemented the
recommendations we received. Four out of seven companies provided recommendations for less discriminatory
alternative models on the deployment data. Most responses were limited to a subset of the Baseline Models. Com‐
panies that built their own credit underwriting models also provided LDA results for their own models. We included
one open‐source tool developed by the research team in the LDA analysis.

5.4.3 DESCRIPTION OF TOOLS

We offer a brief description of the approaches the participating companies took to both disparate impact and fair
lending tasks.

Drivers of disparities Unlike in the case of adverse action notices, all companies (and open source tools) used dif‐
ferent approaches to computing drivers of disparities. These approaches differ along the following dimensions: (1)
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whether they consider feature importance alongside information about how correlated a feature is with protected
class status; (2) how feature importance is determined; (3) how correlation with protected class attributes is deter‐
mined; and (4) how information about the two types of correlations is combined where applicable. The advantages
or disadvantages we point out are based on commentary provided during the course of the evaluation by each
participating company.

DRIVERS OF DISPARITIES

Model diagnostic tools used to compute the drivers of disparities with regards to protected class differ along
the following dimensions: (1) whether they consider feature importance alongside information about how
correlated a feature is with protected class status, (2) how feature importance is determined, (3) how correla‐
tionwith protected class attributes is determined, and (4) how information about the two types of correlations
is combined, where applicable.

We present the tools in three clusters: The first set of tools considers feature importance alongside information
about how correlated a feature is with protected class. This set of tools uses SHAP to compute feature importances.
The second set of tools is similar to the first but uses feature importance tools other than SHAP. The third set of
tools does not consider feature importance.

Tools based on SHAP feature importance Six responses use some form of SHAP feature importance values. These
approaches all combine information about feature importance and feature correlation with protected class. Intu‐
itively, the features responsible for disparities are those that are both important for model predictions and are highly
correlated with protected class. However, the responses differ in the details of how they combine SHAP feature
importance with the information about which features are related to protected class status.

⇒ The open‐source implementation first ranks features according to their correlation with our protected class
indicator. In a second step, this approach then selects the ten features from this list that have the highest
(absolute) SHAP feature importance. This approach is easy to implement but ignores how combinations of
features might interact with protected class status.

⇒ A second approach builds a prediction model for protected class status and selects the features that have the
highest (absolute) SHAP feature importance in this model. This approach then computes the SHAP feature
importances for the default prediction model and then multiplies the two SHAP feature importance values.
The drivers of disparities are the features with the largest combined SHAP values.

⇒ Two additional approaches are similar to the second approach above but use the AIR metric to evaluate the
effect on adverse impact. One of these additional approaches first creates feature families, grouping related
features together. For example, for one feature, the missing value flag, the outlier flag, and the value itself are
commonly grouped together.

⇒ Two final approaches compute the difference in average SHAP values for each feature by protected class.
The drivers of disparities are identified as the features with the largest (absolute) difference in SHAP values
across groups. This basic approach can be applied to both continuous predictions as well as binary predictions
obtained by thresholding the continuous predictions. Both are considered in our analysis. These approaches
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are different from the second SHAP approach listed above since they do not first build a proxy model for
protected classes.

Tools based on non‐SHAP feature importance Two responses use feature importance values based on LIME and
permutation importance, respectively. Both responses are open‐source implementations computed by the research
team. These approaches combine information about feature importance and feature correlationwith protected class
in a similar way to the tools above.
The open‐source implementations first rank features according to their correlation with the protected class indi‐

cator. In a second step, the ten features are selected from this list that have the highest (absolute) feature importance
according either to LIME or permutation importance. These approaches are easy to implement but ignore how po‐
tential interactions between combinations of features and protected class status can affect the model’s predictions.

Tools not based on feature importance Three responses use approaches that do no rely on feature importance
scores.
The first two responses use a leave‐one‐out approach. The general approach of leave‐one‐out is to modify or

drop one feature and re‐compute the adverse impact statistic (leaving themodel otherwise unchanged). As discussed
above in Section 5.1, this approach is widely used by lenders developing and operating Logit underwriting models
and was commonly used among early adopters of ML underwriting models, though its use may be waning. This
approach identifies drivers of disparities by determining those features that produce the largest improvements in
the model’s fairness when left out of the analysis. The leave‐one‐out approach considered in this research was
conducted in two different ways. The first drops all rows from the data where the feature is outside the interquartile
range, that is, the feature value exceeds the 3rd quartile or falls below the first quartile.38 The second approach
replaces values outside of the interquartile range with the feature average.39 Leave‐one‐out‐approaches offer users
simplicity and intuitiveness in attributing feature importance by removal. The disadvantage to such strategies is that
they are not well suited to feature interactions and may not work well across the full distribution of applicants. For
instance, on the first approach, parts of the applicant distribution are dropped altogether. The second case also
makes an implicit assumption that features have an independent impact on model predictions, which means that
feature interactions are not taken into account.
The third approach to identifying drivers of adverse impact uses a prediction model to determine which 10

features in the dataset are jointly most predictive of protected class. The particular implementation in this evaluation
uses a rule‐mining technique to develop the prediction model but in principle it could be implemented using any of
the model types that the research team used to build the baseline prediction models. The results of this approach
are specific to the data set used, not the specific default prediction model that processes the data set.

Approaches to LDA search We now describe the approaches used to find less discriminatory alternatives rather
than merely produce information about how themodel behaves– the second task we asked the participating compa‐
nies to complete. Some LDA strategies focus on identifying key drivers of disparities and thenmodifying or dropping
them to reduce the disparities in the model. Others step away from explainability‐driven approaches and instead
rely on automated tools that search for a range of less discriminatory alternative models.
38Note that this response excluded the missing‐value features, the outlier flags, and any logarithm‐transformed features.
39Other leave‐one‐out approaches are possible but beyond the scope of this analysis. This includes a commonly used approach in which the

variable under study is replaced with “missing” or “0” and the model is scored on all the rows.
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APPROACHES TO LDA SEARCH

Approaches to find less discriminatory alternative (LDA) models evaluated herein fall into three groups. The
first group adopts a feature‐drop strategy that re‐trains the underwriting models after dropping features that
were identified as key drivers of adverse impact. The second strategy reweights the training data to give less
weight to observations in the disadvantaged group that default. The third group relies on more automated
approaches in their search for less discriminatory alternative models.

Two responses suggested dropping the features most related to disparities, thereby directly leveraging the di‐
agnostic tools described in the preceding section. These approaches differ both in the number and identity of the
features that were dropped. One response suggested a feature reweighting approach based on an open‐source
fairness tool. In particular, this response suggested new sample weights to be used in model re‐training.
Three methods that rely on some degree of automation in their search for less discriminatory alternative models

offer a notable contrast. These approaches differ in whether and how they use protected class information in the
search for and construction of less discriminatorymodels, which reflects different judgments about the permissibility
of protected class information in the model building process.
One approach, built by the research team, explicitly incorporates a version of the SMD statistic into the model

training process. Intuitively, with the statistic built in, the machine learning algorithm now optimizes for a weighted
sum of high predictive performance and low adverse impact. By varying the weight on the adverse impact in the
algorithm’s objective function, this ‘joint optimization’ approach can trace out a menu of models that have different
disparate impact and performance properties. The second automated approach combines this joint optimization
approach with an adversarial de‐biasing technique. A third automated approach incorporates automation but does
not explicitly consider protected class information the search for alternative models. Rather, this method searches
over possible feature and hyperparameter combinations to identify a set of alternative models which can then – by
a separate compliance team for example – be evaluated on the basis of their predictive performance and fairness
properties.
For the company models, one company used an additional automated approach. This approach a dual objective

optimization approach. This algorithm is similar to adversarial debiasing, albeit with different implementation details.
This debiasing routine considers two objective functions. The first function computes the AUC (or similar) metric
which needs to be maximized, conditional on reaching the goal on the second objective which computes the bias
metric (in this case, the AIR metric) is minimized below a target threshold. Both objectives are functions of model
parameters. This resulting optimization problem is solved by an iterative mixed gradient approach.

5.5 EVALUATION: FIDELITY

Our first dimension of evaluation is fidelity, that is, the ability to reliably identify features that are in fact driving
disparities in model prediction across protected class. We first describe the fidelity tests on which our analysis is
based and then present results.

Fidelity: the ability to reliably identify features that can help describe disparities in model prediction across
protected class.

Machine Learning Explainability & Fairness: Insights from Consumer Lending 68



5.5.1 EVALUATION DESCRIPTION

Our evaluation of the fidelity of model diagnostic tools in the context of fair lending and disparate impact analysis
is based on two tests. The first test asks whether equalizing the distribution of a feature that has been identified as
a driver of disparities significantly reduces adverse impact in the predictions of an underwriting model. The second
tests perturbs all ten drivers of adverse impact in a favorable direction and records the resulting change in disparities
in the model’s prediction.

FIDELITY TESTS

We conduct two fidelity tests. The reweighting test asks whether equalizing the distribution of a feature
that has been identified as a driver of adverse impact in fact reduces the adverse impact of the model. High
fidelity corresponds to a large drop in adverse impact as a result of the reweighting. The perturbation test
asks whether changing – or perturbing – the features identified as drivers of adverse impact in a favorable
direction reduces disparities on the basis of protected class. High fidelity corresponds to a large drop in
adverse impact as a result of the perturbation. The reweighting test implicitly takes feature correlations
and interdependencies into account by over‐sampling applicants based on the drivers of adverse impact. In
contrast, the perturbation test manipulates features in isolation and does not consider features in the context
of their correlated features or feature families.

The first test reweights features identified as key drivers of disparities. This fidelity test evaluates the following
hypothetical scenario. Assume bankruptcy is a key driver of adverse impact.40 We then create a hypothetical data
set in which the distribution of bankruptcies is the same for the minority and majority groups. For example, in this
new hypothetical data set we no longer observe a larger number of bankruptcies for the minority group. We then
evaluate the model’s disparities on this hypothetical data set. High fidelity corresponds to large improvement in the
model’s adverse impact on this hypothetical data set. Intuitively, if a given feature drives a substantial portion of the
disparities, then equalizing the disparities in the data should reduce disparities. We provide a common benchmark
to evaluate the fidelity properties by randomly choosing features as drivers of adverse impact and repeating the
reweighting test. We repeat the random draw 100 times and average across the results.41 High fidelity implies that
the diagnostic tools perform better, that is induce larger improvements in adverse impact, than the benchmark that
uses a set of random features.
We implement this reweighting test by sampling more non‐minority applicants until the point that we observe

approximately equal distribution across drivers of disparities. We then re‐run the adverse impact assessment using
the modified data set to see if the disparities are reduced. To achieve this equal distribution for continuous fea‐
tures when reweighting the data, we divide continuous features into bins and reweight such that the proportion of
applicants from each group in each bin is equal. We perform this test both for each individual driver of disparities
separately and run a test that simultaneously reweights all top three drivers of disparities.
The second fidelity test is a perturbation test that changes all ten drivers of disparities in the direction that should

induce a favorable relative change in default probabilities for the minority group. We re‐compute adverse impact
metrics after each perturbation to test how much adverse impact has improved. Perturbation‐based fidelity tests
are more challenging to analyze than local feature importance, which we considered in the case of adverse action
40For simplicity, we excluded from the test consideration of patterns, such as periods of high utilization or an increase in balance transfers or

new cards that might commonly precede bankruptcies in consumer credit histories.
41Due to computational limitations, the random benchmark for the Company Models consists only of a single random draw.
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notices. To induce a perturbation we need to know whether the feature increases or decreases adverse impact. A
challenge for complex models that are not constrained to be monotonic is that the same feature can have a positive
impact on default for some (minority) applicants and a negative one for others. Even if the average direction of a
feature is determined to be favorable for reducing adverse impact, we would not expect to see an increase in that
feature to lead to a lower default prediction for all applicants. Nevertheless, perturbation tests can provide some
insights into the fidelity of identified drivers of disparities.
We use two different perturbation schemes described in detail in Appendix C. The first scheme emphasizes

inducing as many changes as possible (even if this might mean an unfavorable change) while the second scheme
does not perturb a feature if the change would be unfavorable. Our baseline results are for the perturbation scheme
that induces as many changes as possible. Results for the second perturbation scheme are reported in the appendix.
All results are qualitatively similar when adopting the second perturbation scheme.
A key difference between these two tests is their treatment of correlated or interdependent features. The

reweighting test implicitly allows other features to change as well as we reweight with respect to the feature identi‐
fied as a driver of disparate impact. Assumewehave identified the number of of bankruptcies as a driver of disparities
in the model. As we over‐sample applicants with many bankruptcies to equalize the distribution of bankruptcies,
we are also changing other aspects of the data. For example, we might expect that applicants with many bankrupt‐
cies also have a history of default. For this reason, the reweighting test considers features in the context of their
correlated features. In contrast, the perturbation test considers features in isolation and only changes the ten fea‐
tures that were identified as drivers of disparities. For this reason, we would expect to see large changes in model
predictions – and adverse impact – resulting from the reweighting test relative to the perturbation test.

5.5.2 FIDELITY RESULTS

KEY FINDINGS

Among the model diagnostic tools we evaluated, some tools can identify features that make significant con‐
tributions to disparities in the default predictions produced by underwriting models and support fair lending
risk management approaches that rely on managing individual features. These tools are able to reliably iden‐
tify features that are related to the model’s disparities such that equalizing the distribution of these features
across groups or perturbing these features in a favorable direction sizably reduces disparities on the basis of
protected characteristics. These tools are also able to identify features that, when changed in a favorable
direction, reduce predicted disparities by more than randomly chosen or even closely correlated features.
The careful interpretation of outputs of these tools is central to their use. We find that changing a small
set of features in isolation is not sufficient to account for observed disparities. However, an approach that
considers this set of features in context with correlated or interdependent features can express main model
differences across protected class.

When considering the reweighting analysis, we find that most responses are associated with improvements in
disparity metrics. The tools performed well for all model types represented in the set of Baseline and Company
Models.
Table 13 shows that fidelity is high across all models – including complex models with hundreds of features.

That is, we observe significant reductions in disparities when equalizing the distribution of the features identified as
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drivers of disparities. We obtain an average increase in the AIR metric by 17 percentage points for a single‐feature
change and an average increase by 25 percentage points for the joint change in the top‐3 drivers of disparities.42

These improvements are large given that the across model differences in AIR in Table 10 were in the range of 2–4
percentage points.43 We note however an important qualification for the interpretation of these results: Since we
change full distributions, this test changes individual features as well as any correlated features. A chosen “driver”
of adverse impact should thus be understood as a change in applicant distribution rather than an isolated change of
just one input feature or three in isolation.

Table 13: FIDELITY TEST ‐ REWEIGHTING TEST

AIR SMD

Beat Avg. Random Beat Avg. Random
# resp random change change random change change

Simple Models

Logit
Single driver 22 0.82 0.18 0.14 0.82 0.29 0.23
Top‐3 drivers 22 0.73 0.33 0.25 0.86 0.45 0.37

Simple NN
Single driver 20 0.70 0.16 0.14 0.65 0.27 0.24
Top‐3 drivers 20 0.75 0.27 0.25 0.65 0.40 0.38

Complex Models

XGBoost
Single driver 22 0.77 0.12 0.04 0.77 0.24 0.10
Top‐3 drivers 22 0.77 0.24 0.10 0.77 0.38 0.22

Neural net
Single driver 20 0.90 0.14 0.05 0.90 0.25 0.11
Top‐3 drivers 19 0.84 0.23 0.12 0.84 0.38 0.24

Company models

Single driver 4 1.00 0.16 0.05 1.00 0.27 0.11
Top‐3 drivers 4 1.00 0.32 0.13 1.00 0.43 0.23

Note: The table shows results for the fidelity tests based on feature reweighting by model type. We equalize the distribution of
one driver of DI at a time (‘Single driver’) or the top‐3 drivers at a time (‘Top‐3 drivers). We then re‐compute the adverse impact
metric (either AIR or SMD). In both cases, we compute a random benchmark that reweighs 1 (or three) randomly chosen
features in the model – we repeat this 100 times and average over the outcomes. # responses indicates how many company
and open source responses we received for that diagnostic tool. Beat random refers to the fraction of responses that achieve
larger reductions in adverse impact than the random benchmark. Average and random change show the average (random)
change in the DI metric achieved by reweighting. All AIR statistics are calculated with a threshold of 0.1.

Themajority of responses – 80% ormore – beat the benchmark that reweighs randomly chosen features. Beating
the random benchmark is likely more challenging for the simple models due to the fact that we chose the random
features for simple models from the relatively small subset of features included in those models. Intuitively, when
there are few features in the model, choosing another random feature is more likely to have a substantial effect on
adverse impact relative to the complex case where we have many features that each only have a marginal effect on
the level of adverse impact in the model’s prediction.
Table 14 shows fidelity across types of diagnostic tools. We group diagnostic tools into three groups: Tools

that use SHAP feature importance alongside a feature’s correlation with protected class; tools that use non‐SHAP
feature importance alongside a feature’s correlationwith protected class; and finally tools that do not use any feature
importance. The first group contains 5 company responses and 1 open‐source tool, the second group contains two
42Recall the no disparities AIR benchmark is 1.
43Recall that the drivers of disparities frequently vary by response to such a degree that there is no single set of top‐3 drivers.
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Table 14: FIDELITY BY DIAGNOSTIC TOOLS ‐ REWEIGHTING TEST

Single driver Top‐3 drivers
AIR SMD AIR SMD

Beat Avg. Beat Avg. Beat Avg. Beat Avg.
random change random change random change random change

SHAP feat. importance
Average 0.98 0.17 0.96 0.28 0.83 0.28 0.88 0.42
Best 1.00 0.21 1.00 0.33 1.00 0.33 1.00 0.48
Worst 0.88 0.14 0.75 0.23 0.25 0.17 0.50 0.33
N 6

Non‐SHAP feat. importance
Average 0.88 0.17 0.88 0.29 0.94 0.30 0.88 0.43
Best 1.00 0.18 1.00 0.31 1.00 0.31 1.00 0.46
Worst 0.75 0.16 0.75 0.28 0.88 0.29 0.75 0.41
N 2

No feat. importance
Average 0.19 0.06 0.19 0.12 0.38 0.18 0.46 0.32
Best 0.38 0.09 0.38 0.17 0.88 0.29 0.88 0.42
Worst 0.00 0.03 0.00 0.07 0.00 0.09 0.00 0.21
N 3

Note: The table shows results for the fidelity tests based on feature reweighting by type of diagnostic tools. We consider three
clusters: responses that use (1) feature importance based on SHAP, (2) feature importance on tools other than SHAP (namely,
LIME and permutation importance) and (3) tools that do not incorporate feature importance scores. N indicates how many
company and open source responses we received for a particular model. The reweighting test equalizes the distribution of one
driver of DI at a time (‘Single driver’) or the top‐3 drivers at a time (‘Top‐3 drivers). We then re‐compute the adverse impact
metric (either AIR or SMD). In both cases, we compute a random benchmark that reweights 1 (or three) randomly chosen
features in the model – we repeat this 100 times and average over the outcomes. Beat random refers to the fraction of
responses that achieve larger reductions in adverse impact than the random benchmark. Average change shows the average
change in the DI metric achieved by reweighting. All AIR statistics are calculated with a threshold of 0.1.

open‐source tools that use LIME and permutation importance respectively, and the third group contains 3 company
responses. The final group contains the leave‐one‐out approaches as well as the approach using only the protected
class prediction model.
We observe high fidelity among both the SHAP and non‐SHAP tools but lower fidelity for the third group of tools

that do not use feature importance to identify drivers of adverse impact. The first two sets of tools perform better
than the random benchmark about 90% of the time while the third set of tools beats the benchmark only half of
the time. We do observe heterogeneity within the first two sets of tools, with the best tool consistently performing
better than the random benchmark but the worst tool beating the random benchmark less than 50% of the time.
Note that there are high‐performing tools both in the set of tools that use SHAP importance as well as the set that
uses other feature importance packages. This finding suggests that the exact feature importance package used is
less important than incorporating this information in the diagnostic tool in the first place.

Perturbation test Table 15 and Table 16 show results for the perturbation‐based fidelity test. For the SMD statis‐
tic, we find that about 70% of responses lead to a drop in the SMD statistic relative to the benchmark, that is, the
perturbation successfully reduces the disparities in the model predictions. Between 50% – 80% of responses (de‐
pending on the model) perform better than the random benchmark, which perturbs 10 randomly chosen feature in
the model. Between 60% and 77% of responses induce bigger drops in the SMD statistic relative to perturbing 10
features that are closely correlated with the ten drivers of disparities indicated by the response. Results for the AIR
statistic (at a 10% threshold), exhibit lower fidelity patterns with the percentages of responses reducing disparity
levels, beats a benchmark of random features, and beats a benchmark of correlated features
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The relative performance by type of diagnostic tool (see Table 16) is similar to the results based on the first fidelity
test. Model diagnostic tools that incorporate information about feature importance generally perform better than
the tools that do not. We find that model diagnostic tools for the Company Models generally perform very well and
often better than the same approaches applied to the Baseline Models.

Table 15: FIDELITY ‐ PERTURBATION TEST

SMD Perturbation Beat benchmark Original value Beat random Random Beat correlated Correlated

Logit 0.05 0.73 0.57 0.64 0.42 0.77 0.52
Simple NN 0.18 0.70 0.57 0.50 0.04 0.60 0.40
XGBoost 0.51 0.68 0.57 0.73 0.57 0.59 0.56
Neural net 0.48 0.75 0.56 0.80 0.57 0.70 0.57

AIR (0.1) Perturbation Beat benchmark Original value Beat random Random Beat correlated Correlated

Logit 0.84 0.63 0.57 0.58 0.54 0.71 0.60
Simple NN 0.91 0.59 0.60 0.55 0.58 0.64 0.92
XGBoost 0.51 0.04 0.63 0.42 0.53 0.38 0.53
Neural net 0.60 0.14 0.67 0.50 0.57 0.64 0.58

SMD Perturbation Beat benchmark Original value Beat random Random Beat correlated Correlated

Alpha 0.47 1.00 0.56 1.00 0.51 1.00 0.55
Beta 0.51 1.00 0.57 1.00 0.57 1.00 0.56
Gamma 0.68 0.00 0.57 0.00 0.57 0.00 0.55
Delta 0.53 1.00 0.57 1.00 0.58 1.00 0.59
Epsilon 0.08 1.00 0.56 1.00 0.58 1.00 0.56

AIR (0.1) Perturbation Beat benchmark Original value Beat random Random Beat correlated Correlated

Alpha 0.53 0.00 0.54 0.00 0.57 0.00 0.55
Beta 0.56 1.00 0.54 1.00 0.54 1.00 0.54
Gamma 0.37 0.00 0.54 0.00 0.52 0.00 0.54
Delta 0.49 0.00 0.54 0.00 0.54 0.00 0.52
Epsilon 0.37 0.00 0.54 0.00 1.21 0.00 0.54

Deployment data Wenow ask howwell drivers of disparities generalize to a new data set with a different applicant
composition. We repeat the fidelity reweighting test on the new data set. Each company was also given the op‐
portunity to identify a set of new drivers after observing the training sample drawn from the deployment data. We
answer two key questions: (1) Do the existing drivers of disparities perform significantly worse in terms of fidelity
on the new data set and (2) do drivers computed for the deployment data set better represent the true drivers.

Deployment Data: a data set that was purposely designed to represent a different composition of applicants.
The deployment data allows us to test how characteristics of model diagnostic tools generalize to never‐
seen‐before settings, mimicking how an underwriting model might encounter a changed environment once
deployed.

Table 17 show the results from repeating the reweighting test but using the deployment test data. We find that
drivers of disparities on the baseline data continue to perform well relative to the benchmark of randomly choosing
features. The fidelity performance on the deployment data is comparable to that on the baseline data shown in
Table 13.

Machine Learning Explainability & Fairness: Insights from Consumer Lending 73



Table 16: FIDELITY BY DIAGNOSTIC TOOLS ‐ PERTURBATION TEST

SMD AIR
Beat Beat Beat Beat Beat

benchmark random correlated benchmark random correlated

SHAP feat. importance
Average 0.86 0.80 0.82 0.41 0.55 0.64
Best 1.00 1.00 1.00 1.00 1.00 1.00
Worst 0.00 0.00 0.00 0.00 0.00 0.00

Non‐SHAP feat. importance
Average 0.88 0.81 0.81 0.38 0.63 0.63
Best 1.00 1.00 1.00 1.00 1.00 1.00
Worst 0.00 0.00 0.00 0.00 0.00 0.00

No feat. importance
Average 0.46 0.42 0.42 0.17 0.33 0.42
Best 1.00 1.00 1.00 1.00 1.00 1.00
Worst 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table shows results for the fidelity tests based on feature perturbation by type of diagnostic tools. We consider three
clusters: responses that use (1) feature importance based on SHAP, (2) feature importance on tools other than SHAP (namely,
LIME and permutation importance) and (3) tools that do not incorporate feature importance scores. N indicates how many
company and open source responses we received for the model. The perturbation test changes each driver of adverse impact in
a favorable direction for the minority group. We then re‐compute the adverse impact metric (either AIR or SMD). In both cases,
we compute a random benchmark that perturbs 10 randomly chosen features in the model – we repeat this 100 times and
average over the outcomes. Beat random refers to the fraction of responses that achieve larger reductions in adverse impact
than the random benchmark. Average change shows the average change in the DI metric achieved by perturbing the drivers. All
AIR statistics are calculated with a threshold of 0.1.
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Table 17: DI: REWEIGHTING TEST ON DEPLOYMENT

AIR SMD

Beat Avg. Random Beat Avg. Random
# resp random change change random change change

Simple Models

Logit
Single driver 11 0.82 0.15 0.09 0.82 0.34 0.27
Top‐3 drivers 11 0.73 0.27 0.21 0.73 0.46 0.41

Simple NN
Single driver 10 0.80 0.13 0.08 0.75 0.31 0.26
Top‐3 drivers 10 0.70 0.23 0.21 0.75 0.43 0.41

Complex Models
XGBoost

Single driver 11 0.68 0.05 0.01 0.77 0.25 0.12
Top‐3 drivers 11 0.77 0.17 0.08 0.77 0.38 0.24

Neural net
Single driver 10 0.65 0.10 0.12 0.90 0.28 0.16
Top‐3 drivers 10 0.60 0.19 0.20 0.85 0.40 0.29

Company models
Single driver 5 1.00 0.19 0.09 1.00 0.28 0.15
Top‐3 drivers 5 1.00 0.34 0.15 1.00 0.46 0.26

Note: The table shows results for the fidelity tests based on feature reweighting on the deployment data. We equalize the
distribution of one driver of DI at a time (‘Single driver’) or the top‐3 drivers at a time (‘Top‐3 drivers). We then re‐compute the
adverse impact metric (either AIR or SMD). In both cases, we compute a random benchmark that reweights 1 (or three)
randomly chosen features in the model – we repeat this 100 times and average over the outcomes. # responses indicates how
many company and open source responses we received for the model. Beat random refers to the fraction of responses that
achieve larger reductions in adverse impact than the random benchmark. Average and random change show the average
(random) change in the adverse metric achieved by reweighting. All AIR statistics are calculated with a threshold of 0.1.
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5.6 EVALUATION: CONSISTENCY

The second dimensions of evaluation is consistency. We consider two types of consistency: (1) consistency of
the drivers of disparities for the same model across different model diagnostic tools and (2) consistency of drivers of
disparities provided by the same tool across different models. We first describe the consistency tests on which our
analysis is based and then present results.

Consistency: Consistency across tools refers to how often two participating companies – or open‐source
tools – identify the same features as drivers of adverse impact. Consistency across models refers to how
often a given model diagnostic tool identifies the same features as drivers of adverse impact across different
underwriting models.

5.6.1 EVALUATION DESCRIPTION

Consistency across tools is generally desirable: it is important that the drivers of disparities do not vary wildly de‐
pending on the method used to generate drivers of disparities. However consistency on its own is not sufficient. If
the model diagnostic tools analyzed in this study all exhibit high fidelity, then consistency is likely a favorable prop‐
erty – we obtain similar answers regardless of the precise tool used. If, however, some tools perform worse than
others, it is not clear that we would expect (or want) consistency. As an extreme example, consider the case where
one tool simply randomly draws features. Clearly, we would not want consistency with this random draw. For this
reason, we present results by the type of diagnostic tool to reflect the differences in fidelity we presented in the
preceding section.
We evaluate consistency across tools by tabulating how often the same features are identified as drivers of

disparities by different responses. In our baseline results, we only treat two responses as consistent if they identify
exactly the same features. We also extend our results to consider (a) feature families – such as outlier flags and
missing value indicators – as well as (b) highly correlated features.

CONSISTENCY TESTS

We test two notions of consistency. Consistency across tools asks how often two participating companies –
or open‐source tools – identify the same features as drivers of adverse impact. Consistency across models
asks how often a given model diagnostic tool identifies the same features as drivers of adverse impact across
different underwriting models.

Consistency across models is helpful to gain insights into how diagnostic tools work but is not necessarily a de‐
sirable property for users of machine learning underwriting models or these diagnostic tools. If we believe that
different models learn similar fundamental (causal) relationships about the world and our goal is to identify the most
important of those relationships for disparities, then consistency is desirable. In other words, if we are hoping to
learn about relationships in the world, we would expect a good model diagnostic tool to consistently identify these
facts about the world. If, however, we believe that different models learn different correlation patterns in the data
and that consumer protection regulations are interested in why a particular model exhibits adverse impact, then it
is not clear that we would want (or expect) consistency across models. If models are learning different patterns,
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we would prefer the model diagnostic tool to correctly identify the pattern that drive disparities for that particular
model.
We evaluate consistency across models by tabulating how often the same features are identified as drivers of

disparities by the same tool across different (but similar) underwriting models. In our baseline results, we only treat
two responses as consistent if they identify exactly the same features. We also extend our results to considering (a)
feature families – such as outlier flags and missing value indicators – as well as (b) highly correlated features.

5.6.2 CONSISTENCY: RESULTS

KEY FINDINGS

We find the following results with regard to consistency across tools and consistency across models. Tools
that exhibit higher fidelity also have more drivers of disparities in common. Tools that exhibit lower fidelity
have almost no drivers in common with each other nor with the high‐fidelity tools. However, even tools with
high fidelity often identify different sets of features that drive disparities. All tools exhibit low to moderate
consistency across models.

Consistency across tools Figure B.2 in Appendix B shows histograms for the pairwise overlap for each model type.
The highest possible consistency is an overlap of 10 drivers, that is, responses generated by two different tools agree
on all ten drivers of disparities. The lowest overlap is 0 drivers, suggesting that two responses have no drivers of
disparities in common.
Unsurprisingly, consistency is higher for simpler models but not by as much as we might expect given that these

models are much less complex (44 features versus 652 features in the complex models). For the Logit models, tools
on average have around 4 drivers in common and for the simple neural network models the tools on average have
around 3 drivers in common. In contrast, for the XGBoost models, tools have 2 drivers in common on average, while
the neural net model sees the lowest overlap with 1.4 average drivers in common.
Table 18 breaks down the consistency statistics across diagnostic tools and fidelity performance. We find that

consistency is high among tools that exhibit high fidelity, with the best performing tools having 6 drivers in common
on average. In contrast, low fidelity responses have almost no drivers in common.
SHAP and non‐SHAP tools have on average 4 drivers in common within as well as across groups. In other words,

what matters for consistency across two tools is how well they perform on fidelity – not if they use the same feature
importance package. In contrast, the group of responses that does not use feature importance have few drivers in
common with each other nor with the other two groups of diagnostic tools.
This finding suggests that even tools that perform equally well in our evaluation often describe underwriting

models in terms of different sets of features. Even for simple models, high‐fidelity tools do not always agree on
the set of features that drives adverse impact. However, it is possible that divergent features still represent similar
underlying information and belong to the same feature family and/or are highly correlated with each other.

Consistency across models Table 19 show how often the same features are mentioned by the same diagnostic
tools across different (but similar) models. Each row in the table compares responses for two different models that
are built in a similar fashion. Concretely, this means we compare responses for the two simple models (Logit and
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Table 18: DI: CONSISTENCY

# of drivers in common
Pairs Mean Min Max

By tool
SHAP feat. importance 50 3.80 0.00 7.50
Non‐SHAP feat. importance 4 4.13 1.50 8.00
No feat. importance 12 0.79 0.00 2.50
SHAP <> no SHAP 44 4.07 8.00 8.00
SHAP <> no feat. imp. 66 1.27 0.00 5.50

By fidelity
High fidelity 12 5.96 3.50 8.00
Medium fidelity 32 3.58 0.00 7.50
Low fidelity 12 0.79 0.00 2.50

Note: The table shows results for the consistency test of drivers of disparities aggregated across all Baseline Models.
Consistency is defined as the number of drivers (out of 10) that two responses have in common. All numbers represent
averages across the number of pairs shown in the second column (‘pairs’). Mean, min, and max denote the number of drivers
that a pair of responses have in common. For example, a maximum of 7.5 in the first row implies that across all 50 response
pairs, there is at least one pair that has 8 drivers of disparities in common and this is the highest overlap we observe across
these 50 response pairs. The first set of rows show consistency across type of diagnostic tool following Table 14 while the
second set of tools divide responses by the degree of fidelity displayed in Table 14.

Table 19: DI: CONSISTENCY ACROSS MODELS

Features in common (out of 10)
Model 1 Model 2 # resp. Mean Max Min

Logit Simple NN 10 3.5 5 0
Neural Net XGBoost 10 3.6 5 2

Note: The table shows results for consistency tests of drivers of disparities across prediction models. Each row compares two
models where the comparison is by model complexity type. We take the average, min and max across the number of responses.
Each row in panel b compares two models.

simple neural network) as well as responses for the two complex models (XGBoost and neural network). On average,
responses agree on 4–5 drivers of DI for the simple models and close to 4 drivers for the more complex models. The
maximum agreement ranges between 5–10, and the minimum is often no overlap at all. Our findings suggest that
the diagnostic tools identify different correlation patterns that drive disparities across models.

5.7 EVALUATION: USABILITY

The final component of our evaluation relates to the usability of information provided by the diagnostic tools, that is,
the ability to identify information that enables lenders to complywith the goals and purposes of consumer protection
regulation. In particular, this evaluation asks towhat extent identifying drivers of disparities can help lenders develop
alternative models that have comparable predictive performance and less disparities than the original models. We
test the ability to identify less discriminatory alternative models both on the baseline data on which the models were
trained as well as on a new data set with a different applicant composition. We first describe the tests on which our
analysis is based and then present results.
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Usability: the ability to identify information that enables lenders to comply with the goals and purposes of
consumer protection regulation. In particular, the ability of a tool to identify less discriminatory alternative
(LDA) models – a key component of fair lending requirements.

5.7.1 EVALUATION DESCRIPTION

USABILITY TESTS

Our usability tests proceed in four stages. We first evaluate whether the less discriminatory alternative
(LDA) models proposed by each participating company reduce adverse impact when additional test data
are run through the models – and at what cost to predictive performance. We then asked the companies
to generate LDA improvements using never‐seen‐before data set with a different applicant composition.
This test allows us to assess how well tools generalize to a different environment. We then evaluate how
LDA improvements compare when companies are given a sample of the never‐seen‐before data that omits
protected class information. Finally, we evaluate how the LDA improvements compare when companies
incorporate a sample of the never‐seen‐before data in their analysis that also includes protected class. This
final stage allows us to test how much having access to protected class information matters for the ability to
identify promising LDA candidates.

Our evaluation of the usability of model diagnostic tools in the context of fair lending and disparate impact
analysis is based on evaluating each company’s recommendation for developing a fairer model by exploring one or
more less discriminatory alternatives (LDAs). We present results for the following four stages.

1. Stage I: We present results of the LDA search that was performed by the participating companies on the
training data. We evaluate all LDA models on a test data set that was not used in the construction of the LDA
models. We separately present results for the Baseline Models and for the Company Models.

2. Stage II: We evaluate the performance of the original LDA recommendations when the adjusted models are
applied to the deployment test data Recall that, as part of the usability analysis, we construct a new data set
with a different applicant composition (‘deployment data’). Table 12 shows basic summary statistics for this
deployment data set. The over‐sampling increases the fraction of minority applicants from 20 to 30% and the
default rate in both groups. It also increases the average differences in default rate between both groups from
10% to 15%. The deployment test data was not used in the construction of the LDA models. We separately
present results for the Baseline Models and for the Company Models. The Stage II evaluation helps us assess
the stability of the LDA improvements found in Stage I when evaluated in a different context. In other words,
we are asking whether the LDA improvements found in Stage I generalize to a new environment when the
model is confronted with a different applicant distribution.

3. Stage III: We evaluate a new set of LDA recommendations generated based on applying the models to a train‐
ing sample of the deployment data – a dataset that differs from the Stage I training data and represents a
different composition of applicants. This deployment data set is identical to the Stage II deployment data.
Notably, participating companies were not given protected class information for the training sample of the
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deployment data. As in Stage II, we evaluate the performance of the LDA search on the deployment test data.
The deployment test data is distinct from the deployment training data and only the latter was used in the
construction of the LDA models. We separately present results for the Baseline Models and for the Company
Models. Stage III helps us evaluate how much re‐running the LDA search with additional information about
the deployment data improves the LDA results relative to Stage II.

4. Stage IV: We evaluate a new set of LDA recommendations generated based on applying the models to the
same deployment data as used in Stage II. In this stage, however, participating companies were also given
protected class information for this new deployment data. As in Stage II and III, we evaluate the performance
of the LDA search on the deployment test data. The deployment test data was not used in the construction of
the LDA models. We separately present results for the Baseline Models and for the Company Models. Similar
to Stage III, Stage IV helps us evaluate howmuch re‐running the LDA search with additional information about
the deployment data improves the LDA results relative to Stage II. Since not all companies participated in
Stage III, Stage IV contains important additional information about the improvement of the LDA search when
incorporating information about the new data environment. In combination with Stage III, we can also learn
about the importance of the presence of imputed protected class information to the performance of the LDA
search.

We focus our analysis on the Logit and XGBoost models since we received the most complete responses for
these models.

5.7.2 USABILITY: RESULTS

KEY FINDINGS

We present three key findings. First, the ability to describe features that drive disparities with respect to a
protected class does not automatically lead to models that are less discriminatory alternatives (LDA) when
this information is used mechanically. Automated tools perform significantly better than strategies based on
dropping features that were identified as drivers of disparities in the model. Second, among the more auto‐
mated tools, no single approach does best across all model types and fairness metrics. Third, all automated
tools generalize well to new environments. In particular, we find that initial LDA improvements continue to
present comparable solutions on a never‐seen‐before data set with a different applicant composition.

Key results We present the following three key results from our usability analysis.

1. The ability to explain what drives disparities does not lead to less discriminatory alternatives models when this
information is used mechanically. A strategy based on dropping features that drive disparities does not lead
to models that have significantly smaller disparities but often leads to substantial performance deterioration.
In contrast, automated tools that search for a range of less discriminatory alternative models, instead of just
dropping important features, can successfully improve fairness metrics.

2. Among the more automated tools considered in this study, there is no tool that always performs best at iden‐
tifying a fairer alternative model at the lowest cost to predictive performance. Rather, we find that which
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automated tool performs best depends on both the type of underwriting model as well as the specific metric
of adverse impact we consider.

3. All of the more automated tools considered in this study generalize well to new environments. In particular,
these tools exhibit two desirable properties when applied to a data set that has a different loan applicant com‐
position. First, the LDA improvements carry over to a new environment that was not used in themodel building
process. Even though the level of adverse impact and predictive performance deteriorate on the new data, the
LDA models still represent a significant fairness improvement while minimizing predictive performance cost.
In fact, these solutions are comparable with the models resulting from a search for LDAs on a training sample
from the new data. Second, we find that these tools are able to identify good LDA models on a data set with a
very different applicant composition. While we observe efficiency gains for these tools when protected class
data is provided, the automated tools considered in this study are able to attain good results even when this
information is withheld.

Structure of results We present the LDA results according to the four stages described in subsubsection 5.7.1. For
each stage, we separately present results for Baseline and CompanyModels (see correspondence in the enumeration
below).

1. Stage I: Figures 6 and 7

2. Stage II: Figures 8 and 9

3. Stage III: Figures 10 and 11

4. Stage IV: Figures 12 and 13

Each LDA figure shows both predictive performance and fairness metrics on different axes of the graphs to
visualize the trade‐offs between these two key metrics. The y‐axis on all graphs shows a measure of predictive
performance – the Area‐under‐the‐Curve (AUC). Higher AUC numbers reflect higher predictive performance – with
1 indicating perfect prediction and 0.5 performance that is no better than a random guess. The x‐axis shows a
measure of disparities with values further to the right corresponding to models with less disparities. For all figures in
the main text, we use the AIR metric and present results for both a 10% and 20% threshold. In Appendix B, we also
present all corresponding figures with the SMD metric. Points further to the top‐right of the graph represent more
desirable models, that is, these models exhibit both high predictive performance and low disparities. Points closer
to the bottom left of the graph show less desirable models, that is, these models exhibit less predictive performance
and more disparities. As we move from the top‐left point to the bottom‐right of the graph, we trade off predictive
performance against the disparities of the model.
Each line or set of points corresponds to a model evaluated on the test data set (either test or deployment

test set). For each method, we show both the starting point and the alternative models found as part of the LDA
search. We refer to the starting point as the ‘baseline’. The starting point represents the models that were trained
without protected class information and that we evaluated in the preceding section on fairness properties. Some
approaches suggested multiple points and we represent these approaches as a line that interpolates between the set
of points received. The top‐left point on each line represents the a model prior to any LDA search. Note that some
companies first built their own BaselineModels, that is, these approaches built replica models of the BaselineModels
prior to the LDA search. One company producing these replica models restricted themselves to only features that
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were not required to be masked by the data vendor. For those LDA results, we separately show the new baseline
point generated by this method. All results should be evaluated relative to their own baseline model since some
approaches produced replica models that perform slightly differently.
We now discuss each of the four stages in turn.

Stage I

Baseline Models Stage I represents the first round of LDA searches that were performed by the participating
companies on the training data. Starting with the XGBoost model, we find that three approaches work well in tracing
out a frontier of models that trade off predictive performance and adverse impact (in particular when considering
the AIR metric and a 20% threshold). All of these three methods suggested a series of LDA models. These three
methods are depicted as the two lines (solid and dotted) as well as the series of x symbols in the figures. Each of
these three approaches start from a slightly different baseline model due to two companies first building their own
replica of the Baseline Model.44 In Figure 6, these baselines are depicted as the blue x and the top‐left points of
the the dotted and solid lines, respectively. All three methods involve a degree of automation in their search for
LDA models. While all three methods start from slightly different baseline models, all three methods suggest LDA
models that perform broadly similarly in terms of predictive performance and disparities metrics. However, no single
method does best across all models and fairness metrics. We show additional results replacing the threshold‐specific
AIR metric with the SMD metric in Figure B.3 in Appendix B. We hypothesize that this finding is driven by the fact
that each LDA method considered in this study optimized for a different fairness metric and performs best for the
fairness metric that it targeted.
All other approaches remain within these frontiers. These approaches are characterized by the diamond, circle

and square points in the figure. All of these points should be evaluated relative to the Baseline Model, which is
represented by the top‐left point on the solid line. The feature reweighting leads to virtually no change. We hy‐
pothesize that this likely reflects that only four distinct sample weights were supplied. A more complex (conditional)
reweighting approach might lead to larger observed changes. The two feature dropping approaches appear gener‐
ally inefficient. The best among them generate models with less adverse impact but at high performance cost. The
worst simply reduce predictive performance but do not improve adverse impact.
To understand the magnitude of these changes, it is helpful to translate the points on the figures into (a) the

number of minority and non‐minority applicants who are approved at a given approval threshold, (b) the number
of applicants who are ‘incorrectly’ accepted at a given approval threshold, that is, are accepted but then default
(‘false approval’) and (c) the number of applicants are ‘incorrectly’ rejected, that is, are rejected at a given approval
threshold but would not have defaulted (‘false rejects’). We consider only the three approaches that propose models
that lead to significant fairness improvement. At a (relatively generous) 20% approval threshold, all three baseline (or
starting point) models approve about 56% of minority applicants and 78% of non‐minority applicants. About 52%
of minority applicants are ‘incorrectly’ approved and 20% are ‘incorrectly’ rejected. The corresponding numbers for
the non‐minority group are 75% and 10%. The fairest alternative for each approach increases approval rates for
minorities by 10, 11, and 20 percentage points, respectively. The non‐minority approval rates of the fairest model
increase by 2 percentage points, 0 percentage points and 8 percentage points, respectively. These fairest alternative
44As noted above, one company conducted the LDA analysis only on features that were identifiable given masking requirements from our data

vendor. Since some of the excluded variables were important in the model, this choice affected the relationship of their LDA outputs to the
frontier.
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models correspond to the points furthest to the right on the solid and dotted lines as well the ‘x’ marker furthest to
the right in Figure 6. The increased approval rates are also reflected in fewer false rejects. The false reject rate for
the minority group drops by 6 percentage points, 9 percentage points, and 23 percentage points, respectively. The
corresponding drops for the non‐minority groups are 4 percentage points, 3 percentage points, and 24 percentage
points. However, these relatively larger increases in approval rates for the minority group come at the cost of more
false approvals. Intuitively, as more applicants are approved, we are less likely to falsely reject a qualified applicant
butmore likely to approve an applicant whowill later default. The false approval rate for theminority group increases
by 7 percentage points, 8 percentage points and 16 percentage points, respectively. This increase in false approval
rates is reflected in the lower predictive performance of these alternative models, that is, they have lower AUC
metrics in Figure 6. Note that the AUC captures false approvals and false rejects at all possible approval thresholds
while this specific example considers a single approval threshold of 20%.
We find qualitatively similar results for the Logit model. The reweighting approach again has virtually no effect on

the model. Some of the feature drop approaches now lead to improvements in predictive performance and, in some
cases, to improvements in adverse impact. The latter is partially an artifact of how we implemented the feature‐
dropping approach for simple models. Given the small number of features in the model, we used a LASSO‐based
feature selection procedure to replace the dropped features as opposed to simply omitting them from the model.
Given the large number of features that were recommended to be dropped, simply omitting these features from the
model would have led to significantly lower model complexity and undermined the comparison needed to evaluate
the results.
The Logit models starting points for the three automated approaches again differ since two companies built

replica versions of the Logit provided by the research team. Again considering a 20% approval threshold, the three
baseline models have minority approval rates of 58%, 56%, and 57%, respectively. Approval rates for the non‐
minority group are 78%, 76%, and 80%, respectively. In Figure 6, these baseline models are depicted as the blue x
and the top‐left points of the the dotted and solid lines, respectively. The fairest alternative model increase minority
approval rates by 21 percentage points, 10 percentage points, and 22 percentage points, respectively. Approval
rates for the non‐minority group again increase by less, namely by 6 percentage points, 3 percentage points, and 2
percentage points, respectively. The relatively larger increase in approval rates, which drives the improvements in
the AIRmetrics, is again reflected in larger drops in the false reject rates. False reject rates decrease by 25 percentage
points, 10 percentage points, 22 percentage points for theminority group and by 21 percentage points, 8 percentage
points and 15 percentage points for non‐minority group. Again, higher approval rates come at the cost of higher false
approval rates, which increase by 15 percentage points, 7 percentage points, and 8 percentage points for theminority
group and by 4 percentage points, 2 percentage points and 0 percentage points for non‐minority group. We note
that one approach also provided two models not depicted in the Figure 6 for easier graphical representation. These
models represent relatively extreme points of almost perfect fairness but relatively low predictive performance. On
the graph, these models would lie to the very far right of the graph at an AIR of close to 1 (at a 20% threshold) but
at a very low predictive performance of an AUC of 0.65.

Company models We now discuss the LDA search for five Company Models, since one company which built a
prediction model did not participate in the disparate impact analysis. We also show LDA results for the open‐source
tool applied to the XGBoost BaselineModel as a reference (‘Method X’). We find similar results for the company LDA
search as for the BaselineModels. Unlike in the first two figures, we now compare LDA results with eachmethod also
corresponding to a different model. The focus of the analysis is therefore on the improvement of each method/model
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relative to its baseline. As before all baseline points are depicted in blue and all LDA models are depicted in black.
Baseline‐LDA pairs share the same symbol on the graph.
We find qualitatively similar results for the Company Models. The three LDA searches that relied on a feature

drop strategy do not consistently improve themodel’s fairness and reduce predictive performance. One unusual case
here is the third feature‐drop solution, which improves adverse impact substantially relative to a small performance
drop in the case of AIR, although the starting point model does not have the same predictive power. The two
LDA searches performed with an automated adversarial de‐biasing strategies perform well at generating a range of
models with lower adverse impact. These LDA models look comparable to the XGBoost open‐source LDA search
generated by the research team.
For the Baseline XGBoost model, the best LDA results attain an AIR of around 0.8 (at a 20% threshold) with an

AUC of 0.85. Two Company Models combined with an automated de‐biasing attain similar predictive performance‐
fairness combinations. In contrast, some of the LDA results for the Company Models extend the frontier further
and propose models higher AIR but lower predictive performance costs. Note that this finding also holds with the
threshold‐independent SMD metric (see Figure B.4 in Appendix B). One company that employed a feature‐drop
strategy for their LDA search offers significantly higher fairness when considering the 20% AIR threshold but not
when evaluated on the SMD metric.

Stage II

Baseline Models Across both Baseline and Company Models, we find that both predictive performance and
disparities worsen on the new data set. The performance deterioration is unsurprising since the data set is no longer
drawn from the same population as the one on which the models were trained. The deterioration in disparities is
partly by design as we purposely over‐sampled minority applicants for this new data set. If there are more minority
applicants whom the models predict pose a higher risk of default, this difference will translate into lower AIR and
SMD metrics.
However, we find that the LDA models continue to represent significant improvements when evaluated on the

deployment data set. The patterns we observed in Stage I largely generalize to the new environment. This finding
suggests that although the underlying applicant composition has changed, the model improvements found as part
of the LDA search continue to hold on the deployment data. In other words, improvements in disparities are not
specific to the particular environment on which they were built. Below we compare these improvements relative to
the LDA models that were proposed incorporating information about this new data set.

Stage III and IV Stage III presents results of the LDA search that was performed by the participating companies
on the deployment data. However, participating companies were not given protected class information for this new
deployment data. Note that we received fewer responses for this stage relative to Stage III due to the perceived
difficulty of performing this task without additional protected class information. Stage IV presents results of the
LDA search that was performed by the participating companies on the deployment data. In this stage, participating
companies were given protected class information for this new deployment data.

Baseline Models We find broadly similar results in Stage IV on the relative performance of different methods
to perform LDA searches. The two automated tools continue to outperform feature‐dropping and reweighting ap‐
proaches (one automated tool did not participate in this part of the research). In Stage I, the automated approaches
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were able to suggest models that led to a roughly 10 percentage point increase in the AIR metric (regardless of ap‐
proval threshold). This improvement came at the cost of a roughly 2.5 percentage point drop in AUC. On the new
deployment data in Stage IV, the automated tools produce comparable improvements in fairness. The predictive
performance costs are slightly larger and around 3 percentage points of AUC. Overall, however the performance is
remarkably similar.
For the Logit model, we find that one feature drop approach leads to improvements in predictive performance

and, in some case, to improvements in adverse impact. We again highlight that the latter is partially an artifact of
how we implemented the feature‐dropping approach for simple models. Given the small number of features in the
model, we used a LASSO‐based feature selection procedure to replace the dropped features as opposed to simply
omitting them from the model. Given the large number of features that were recommended to be dropped, simply
omitting these features from the model would have led to significantly lower model complexity and undermined the
comparison needed to evaluate the results.
Translating our results to approval rates, we find that the fairest models resulting from the two automated ap‐

proaches in Stage IV increase minority approval rates by 16 percentage points and 12 percentage points, respec‐
tively. These results describe the points in Figure 12. One approach leads to an increase in approval rates for the
non‐minority group by 3 percentage points while the other decreases approval rates for non‐minority group by 2
percentage point. False reject rates for the minority group again drop – by 7 percentage points and 6 percentage
points for the approaches, respectively. For the non‐minority group, false reject rates drop by 5 percentage points
and 1 percentage points. We again observe a trade‐off with the number of false approvals. For the minority group,
the two approaches lead to increases by 12 percentage points and 9 percentage points, respectively. Reflecting, the
non‐minority approval rate changes, we find that false approvals increase by 2 percentage points for one method
and decrease by 2 percentage points for the other method.
Comparing Stage III and IV results, presented in Figure 10 and Figure 12, shows that the presence of protected

class information on the new deployment data set provides surprisingly little value. That is, the more two automated
approaches are still able to find comparable LDA models even when relying only on a prediction of protected class
instead of the imputed protected class information used in this study. The same amount of model fairness requires
a roughly 1‐2 percentage points higher AUC reduction in Stage III – where protected class is not known – relative
to Stage IV, where protected class information is known. The result holds across all fairness metrics (Figure B.7 and
Figure B.9 in Appendix B provide results for the SMD metric).
Comparing the results in terms of approval rates, the twomore automated approaches increaseminority approval

rates by 13 percentage points and 4 percentage points, respectively. The non‐minority approval rates is reduced by
1 percentage point and 0 percentage points, respectively. False reject rates for minorities drop by 7 percentage
points and 2 percentage points and minority false accepts rate increase by 9 percentage points and 3 percentage
points, respectively. These smaller magnitudes likely reflect two different forces. First, the lack of protected class
leads to reduces the ability to efficiently find LDA alternatives. However, these losses appear small. Second, the
smaller magnitudes likely reflect that one of the more automated approaches presented a narrower range of LDA
models in Stage III relative to Stage IV. This difference likely does not reflect a technical limitation but rather an ad
hoc decision in the parameters used in the LDA search.
We find that the LDA models found in Stage IV do not necessarily represent unambiguous improvements over

the LDA solutions found in Stage I. In other words, the gains to re‐running the LDA search on a new data set appear
quite small if present at all. One automated solution proposes LDA models in Stage IV that have higher predictive
performance but do not necessarily improve on the AIR or SMDmetrics. This finding holds true for both the Logit and
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XGBoost Baseline Models. The second approach similarly proposes LDA models in Stage IV with higher predictive
performance but slightly more disparate impact. In contrast, the Stage IV solutions for the XGBoost model sacrifice
some predictive performance but decrease disparate impact. These differences however are quantitatively small –
with less than a percentage point difference in AUC and less than 5 percentage point differences on the AIR and
SMD metrics.

Company models Our Stage I results also broadly hold for the Stage III and IV results. The automated methods
outperform the feature‐drop approaches although we observe relatively larger improvements for the feature‐drop
approaches in Stage IV relative to Stage I. However, this difference in magnitudes is difficult to interpret since the
underlying data sets differ significantly. One feature‐drop method‐model combination continues to provide alter‐
native models with large fairness improvements when considering the AIR metrics. However, this improvement does
not hold when looking at the SMDmetric and both the initial model as well as the LDAmodel do not have predictive
power on par with LDA models produced by other methods.
Similar to our finding for the Baseline Models, there are small efficiency gains from providing protected class

information. However, these gains are small and all methods still perform well when no protected class information
is available. One difference is that the set of automated tools provides a wider ranger of LDA alternatives when
given protected class information in Stage IV. This difference likely does not reflect a technical limitation but rather
an ad hoc decision in the parameters used in the LDA search.
Similar to Stage I, we find that the automated tools applied to the Company Models propose LDA models with

similar predictive accuracy and fairness properties to the automated tools applied to the Baseline XGBoost model.
This finding holds both for the AIR metrics as well as the threshold‐independent SMD metric (see Figure B.10 in
Appendix B). This finding suggests that the ability of automated tools to find efficient LDA alternatives is not model‐
specific.
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Figure 6: LDA RESULTS STAGE I – BASELINE MODELS

(a) LOGIT – AIR (10%) (b) LOGIT – AIR (20%)

(c) XGBOOST – AIR (10%) (d) XGBOOST – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at either a 10% or 20%
approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different symbols distinguish
between different methods. For the methods represented as lines (since they suggested many different LDA models), the
Baseline Model always corresponds to the top‐left point of the line.
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Figure 7: LDA RESULTS STAGE I – COMPANY MODELS

(a) COMPANY MODELS – AIR (10%) (b) COMPANY MODELS – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Company Models.
All statistics are computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond
to better predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at either a 10% or
20% approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different symbols
distinguish between different methods. For example, the blue triangle represents the starting point for Method A and the black
triangle represents the LDA model for Method A. For the methods represented as lines (since they suggested many different
LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure 8: LDA RESULTS STAGE II – BASELINE MODELS

(a) LOGIT – AIR (10%) (b) LOGIT – AIR (20%)

(c) XGBOOST – AIR (10%) (d) XGBOOST – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at either a 10% or 20%
approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different symbols distinguish
between different methods. For the methods represented as lines (since they suggested many different LDA models), the
Baseline Model always corresponds to the top‐left point of the line.
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Figure 9: LDA RESULTS STAGE II – COMPANY MODELS

(a) COMPANY MODELS – AIR (10%) (b) COMPANY MODELS – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Company Models.
All statistics are computed on the deployment test data. The y‐axis shows the AUC performance metric. Higher AUC numbers
correspond to better predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at
either a 10% or 20% approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different
symbols distinguish between different methods. For example, the blue triangle represents the starting point for Method A and
the black triangle represents the LDA model for Method A. For the methods represented as lines (since they suggested many
different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure 10: LDA RESULTS STAGE III – BASELINE MODELS

(a) LOGIT – AIR (10%) (b) LOGIT – AIR (20%)

(c) XGBOOST – AIR (10%) (d) XGBOOST – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Baseline Models.
All statistics are computed on the deployment test data. The y‐axis shows the AUC performance metric. Higher AUC numbers
correspond to better predictive performance. The x‐axis shows the adverse impact metrics.The x‐axis shows the adverse impact
metrics, using adverse impact ratios at either a 10% or 20% approval threshold. Colors distinguish between the starting point
(baseline) and the LDA model. Different symbols distinguish between different methods. For the methods represented as lines
(since they suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure 11: LDA RESULTS STAGE III – COMPANY MODELS

(a) COMPANY MODELS – AIR (10%) (b) COMPANY MODELS – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Company Models.
All statistics are computed on the deployment test data. The y‐axis shows the AUC performance metric. Higher AUC numbers
correspond to better predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at
either a 10% or 20% approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different
symbols distinguish between different methods. For the methods represented as lines (since they suggested many different
LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure 12: LDA RESULTS STAGE IV – BASELINE MODELS

(a) LOGIT – AIR (10%) (b) LOGIT – AIR (20%)

(c) XGBOOST – AIR (10%) (d) XGBOOST – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Baseline Models.
All statistics are computed on the deployment test data. The y‐axis shows the AUC performance metric. Higher AUC numbers
correspond to better predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at
either a 10% or 20% approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different
symbols distinguish between different methods. For the methods represented as lines (since they suggested many different
LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure 13: LDA RESULTS STAGE IV – COMPANY MODELS

(a) COMPANY MODELS – AIR (10%) (b) COMPANY MODELS – AIR (20%)

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) search for the Company Models.
All statistics are computed on the deployment test data. The y‐axis shows the AUC performance metric. Higher AUC numbers
correspond to better predictive performance. The x‐axis shows the adverse impact metrics, using adverse impact ratios at
either a 10% or 20% approval threshold. Colors distinguish between the starting point (baseline) and the LDA model. Different
symbols distinguish between different methods. For example, the blue triangle represents the starting point for Method A and
the black triangle represents the LDA model for Method A. For the methods represented as lines (since they suggested many
different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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6 CONCLUSION

As the use of machine learning underwriting models continues to expand, lenders and their regulators will gain
institutional experience with and confidence in the kinds of model diagnostic tools evaluated herein as well as the
underlying models themselves. For now, we hope that this evaluation provides insight as stakeholders make choices
about how to develop, implement, and manage fair and responsible machine learning underwriting models. The
analysis presented herein is intended to help stakeholders as they reconsider current expectations and practices
and the articulation of policy and market practices.

Key Contributions While encouraging, our evaluation suggests that there are no universal or “one size fits all”
model diagnostic tools that lenders can use to help them explain, understand, and manage all aspects of machine
learning underwriting models. Rather, the specific context in which information about the model’s operation will
be used is critical to selecting the right tool. Information about a model that is appropriate and useful to respond
to one regulatory requirement may not necessarily be similarly responsive to a different requirement. As a result,
lenders must make careful judgments both when they select and implement tools designed to help them understand
and manage machine learning underwriting models. The same is true when lenders make decisions about how to
respond to and use the information that those tools produce. Thus, the responsible use of model diagnostic tools
adds another dimension to the many consequential decisions that lenders must make – and will be responsible for
– when designing, implementing, and operating machine learning underwriting models.
To that end, we offer two primary contributions:

1. A framework for evaluating the quality and usability of information produced about machine learning models’
behavior.

2. A rigorous case study regarding the use of various model diagnostic tools in the context of specific legal and
regulatory requirements that in one way or another prompt lenders to address transparency challenges asso‐
ciated with machine learning models.

Both of these contributionsmay be relevant to other sectors, such as medicine, criminal justice, and employment,
where AI and machine learning models are being used to help make highly consequential decisions. Implementing
machine learning in the context of extending consumer credit brings into play among themost exacting requirements
focused on promoting responsible risk‐taking and providing consumers broad, non‐discriminatory access. Efforts to
ensure that emerging uses of advanced prediction technology – to explain, understand, and debias machine learning
models – satisfy these requirements gives technologies that gain acceptance in finance disproportionate potential
to shape how other sectors answer the same questions.

Further Research Our work to date suggests a number of paths for additional inquiry. We plan to supplement this
report later in the year. The next publication will include two main additions:

1. An extension of our evaluation of the capabilities, limitations, and performance of various model diagnostic
tools in the context of the consumer protection requirements regarding adverse credit decisions and anti‐
discrimination requirements based on stakeholder input and further testing

2. An application of the evaluation framework used herein to assess the model diagnostic tools in the context of
prudential model risk management expectations.
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Once those further analyses are done, we will also consider holistically the implications of our findings across
all three risk areas for the fair, responsible, and inclusive use of machine learning underwriting models and for the
evaluation of approaches to explaining and managing machine learning models more generally.
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A COMMON TERMS AND ACRONYMS

Adversarial debiasing: Adversarial models are models that can be used during training to debias machine learning
models. In this context, adversarial models attempt to predict the protected class status of an individual based on
the output of the underlying model, with the underlying model continuing to adjust until the ability of the adversary
to correctly predict protected class characteristics diminishes to an appropriate point.

Adverse impact ratio (AIR): This metric represents the industry standard for evaluating disparities in a variety of
contexts including credit and hiring. It is defined as the ratio of the acceptance rate for the minority group to the
acceptance rate of the majority group. AIR values closer to 1 correspond to more parity.

Area under the curve (AUC): AUC provides an aggregate measure of performance across all possible classification
thresholds. AUC can be interpreted as the probability that the model ranks a random positive example more highly
than a random negative example.

Conditional statistical parity: Conditional statistical parity measures whether the likelihood of a predicted positive
outcome is the same across protected classes, once a set of control variables has been accounted for. The variables
are typically chosen because they have a close link to the outcome being predicted by the model, and thus increase
the accuracy of its predictions.

Consistency: When applied to descriptions of model behavior, consistency refers to the degree to which tools
identify the same drivers either for the same model or across models.

Disparate impact: Disparate impact is one of two theories for establishing legal liability for discrimination against
classes of persons protected under the Equal Credit Opportunity Act (ECOA) or Fair Housing Act (FHA). It prohibits
the use of facially neutral practices that have a disproportionately adverse effect on protected classes, unless those
practices meet a legitimate business need that cannot reasonably be achieved through less impactful means.

Disparate treatment: Disparate treatment is one of two theories for establishing legal liability for discrimination
against classes of persons protected under the Equal Credit Opportunity (ECOA) Act or Fair Housing Act (FHA). It
prohibits treating individuals differently based on a protected characteristic. Establishing disparate treatment does
not require any showing that the treatment was motivated by prejudice or a conscious intention to discriminate.

Equal Credit Opportunity Act (ECOA): The Equal Credit Opportunity Act of 1974 is a federal statute (codified at
15 U.S.C. § 1691 et seq.) that makes it unlawful for any creditor to discriminate against any applicant, with respect
to any aspect of a credit transaction, on the basis of race, color, religion, national origin, sex, marital status, or age
(provided the applicant has the capacity to contract); to the fact that all or part of the applicant’s income derives from
a public assistance program; or to the fact that the applicant has in good faith exercised any right under the Consumer
Credit Protection Act. ECOA is implemented by the Consumer Financial Protection Bureau through Regulation B
(codified at 12 C.F.R. Part 1002).
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Explainability: In this report, model explainability refers to the ability of various stakeholders to understand how
or why a particular decision was made or result was reached.

Explainability techniques: Post hoc explainability techniques are supplemental models, methods, and analyses used
to improve the transparency of complexmodels. Since these tools are used after themodel has been trained, they are
often referred to as post hoc or indirect techniques. These methods do not generally affect the design or operation
of the underlying model and can be used with a variety of machine learning model types.

Fair Credit Reporting Act (FCRA): The Fair Credit Reporting Act is a federal statute (codified at 15 U.S.C. § 1681
et seq.) enacted to protect consumers from the willful and/or negligent inclusion of inaccurate information in their
credit reports and to promote the accuracy, fairness, and privacy of consumer information contained in the files
of consumer reporting agencies. FCRA regulates the collection, dissemination, and use of consumer information
for credit purposes as well as for activities such as employment, insurance, and housing. It is implemented by the
Consumer Financial Protection Bureau through Regulation V (codified at 12 C.F.R. Part 1022).

False positive rates (FPR): The FPR refers to the fraction of non‐defaults that are incorrectly predicted as defaults.
FPR is a threshold‐based metric that can be used to assess a model’s fairness. It requires access to information
about whether the borrower defaulted, instead of only taking approvals into consideration. Values closer to zero
correspond to more parity (or less disparity).

Feature importance: Feature importance refers to how much impact an input variable has on the target prediction
in a model. Various post hoc explainability techniques are designed to identify and quantify feature importance
within more complex models.

Fidelity: When applied to descriptions of model behavior, fidelity refers the ability to reliably identify features that
are relevant to a model’s prediction.

Fitness‐for‐use: Fitness‐for‐use refers to the effectiveness of a model in serving its purpose, which can include
model accuracy, fairness, and other factors, and the quality of the plan to appropriately manage risks related to
operation of a particular model. Model risk management expectations require firms to determine that a model is fit
for use prior to deployment.

Global explainability: Global explainability refers to the ability to identify a model’s high‐level decision‐making
processes and is relevant to evaluating a model’s overall behavior and fitness‐for‐use.

Hyperparameter: Hyperparameters refer to aspects of amachine learningmodel that are not learned from the data,
but rather are determined by model developers, such as the number of nodes in a decision tree. Hyperparameters
can affect the predictiveness and explainability of the model and are often adjusted during model tuning.

Inherently interpretable models: An inherently interpretable model specifies the contribution that each input vari‐
able makes toward the output and enables stakeholders to understand its predictions without the use of secondary
models, analyses, or methods. These models are also sometimes referred to as self‐explanatory.
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Interpretability: Model interpretability refers to the ability to understand a model’s operations based largely on
its formal notation and without reliance on secondary models, analyses, or methods. To be interpretable, a person
should be able to infer the following: (1) the types of information or input variables that a model uses, (2) the
relationship between the input variables and the model’s predictions or outputs; and (3) the data conditions for
which the model will return a specific result.

Local interpretable model‐agnostic explanations (LIME): LIME is a feature importance explainability technique
that uses local linear surrogate models around a particular data point to approximate a complex model’s output.
The resulting local surrogate models are used to both explain the model’s behavior around individual data points
and quantify feature importance for the overall model. LIME is generally used today as a baseline against which to
compare the outputs and performance of other explainability tools or to generate insight into feature importance.

Linearity: Linearity is a property of models whereby changes in a particular input produce a consistent rate of
change in the output.

Linear regression: Linear regression refers to a statistical technique that computes the best‐fit linear relationship
between input variables and a target variable.

Local explainability: Local explainability refers to the ability to identify the basis for specific decisions made by a
model.

Model debiasing: Model debiasing refers to a range of methods to reduce bias in a model’s predictions, either by
transforming the input data, building a debiasing function into model training, or transforming a model’s output.
Debiasing techniques vary based on the model’s use case, the data being used, model complexity, and other factors.

Monotonicity: Monotonicity refers to a relationship that is one‐directional (e.g., increasing the value of an input
variable will always cause the output to increase or will always cause the output to decrease). Imposingmonotonicity
constraints can helpmodel developers limit the complexity and improve the explainability ofmachine learningmodels
while potentially distorting the true relationship between the input and output.

Non‐threshold based metrics: The approaches to measuring model fairness use the underlying model predictions
as opposed to discrete classifications or implied decisions of the model. Statistical or demographic parity, the stan‐
dardized mean difference, and conditional statistical parity are illustrative non‐threshold based metrics.

Perturbation: Perturbation is a technique used in various feature‐based explainability methods that identifies key
drivers of a model’s prediction by assessing iteratively the effect on the model’s prediction of a series of incremental
changes to input data. For example, to identify what level debt‐to‐income an unsuccessful loan applicant would
have needed to obtain a loan (assuming no changes in other credit characteristics), a perturbation‐based method
might consider the effect of a series of small changes on either side of the applicant’s actual debt‐to‐income ratio to
identify the point at which the model’s predicted default was sufficient for approval.
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Protected class: Like anti‐discrimination statutes applicable in other areas, ECOA and FHA prohibit discrimination
against people based on a common characteristic. Such characteristics include race, color, religion, national origin,
sex, marital status, disability status, family status, or age (provided the applicant has the capacity to contract); reliance
on a public assistance program; or in the good faith exercise good faith of any right under certain federal consumer
financial laws.

ShapleyAdditive Explanations (SHAP): Shapley Additive Explanation is a feature importance explainabilitymethod
that is used to explain complex models. SHAP does this by indicating the contributions of particular features in
changing a model’s outcome. It is similar to LIME in that it explains a model locally. This method measures feature
importance by removing features from a data point and quantifying how much that effects the model’s output.

Standardized mean difference: Standardized mean difference is a scaled version of statistical parity that is widely
used by industry in fair lending compliance, as well as in other anti‐discrimination contexts like employment. It is
defined as the average difference in predictions by between protected classes, divided by the standard deviation of
the model predictions. The closer to zero, the more parity.

Statistical or demographic parity: Statistical or demographic parity is defined as the difference in the average
predicted probabilities by protected class. The closer to zero, the more parity.

Threshold‐basedmetrics: Threshold‐basedmetrics apply a hypothetical approval cutoff to the predictions ofmodel.
These metrics focus on relevant outcomes by considering the approval threshold used in practice.

True positive rates (TPR): The TPR is a threshold‐based metric that can assesses a model’s fairness based on the
fraction of defaults that are correctly predicted. It requires access to information about whether the borrower
defaulted, instead of only taking approvals into consideration. Values closer to zero correspond to more parity or
less disparity.

Usability: When applied to descriptions of model behavior, usability refers to the ability to identify information
that helps lenders manage particular compliance tasks in accordance with the goals and purposes of the underly‐
ing regulation. Unlike fidelity and consistency, the exact definition of usability depends on the specific regulatory
requirement in question.
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B ADDITIONAL RESULTS

This appendix provides additional figures and tables.

Table B.1: ML HYPERPARAMETER TUNING OF BASELINE MODELS

Model Score Search Space Best Model

XGBoost

Negative Log‐Loss

max_depth: [1,2,3,..,11,12] 9
min_child_weight: [1,2,3,..,9,10] 8
n_estimators: [100, 500,1000] 1000
learning_rate: [0.01, 0.1, 0.3] 0.01
gamma: [0, 0.2, 0.4, 0.6, 0.8] 0.6
max_delta_step: [0,1,5,10] 0
subsample: [0.3, 0.5, 0.75, 1] 0.75
colsample_bytree: [0.3, 0.5, 0.75, 1] 0.5

Neural Network Binary Cross‐Entropy Batches: [5, 10, 20] 10
Neurons: [10, 25, 50, 75, 100] 10

Note: The above table presents the final search space for each Baselin Model and chosen hyperparameters according to 5‐fold
cross‐validation scores.
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Figure B.1: DISTRIBUTION OF PREDICTION FOR REJECTED APPLICANTS
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Note: The figure shows the distribution of model predictions for the 3000 rejected applicants considered in the Adverse Action
Notice analysis.
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Figure B.2: DISPARATE IMPACT: CONSISTENCY
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(a) LOGIT
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(b) SIMPLE NN
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(c) XGBOOST
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(d) NEURAL NET

Note: Each panel of the figure shows a histogram of consistency across diagnostic tools by type of Baseline Model. Consistency
is defined as the number of drivers (out of 10) that two responses have in common. The y‐axis denotes the fraction of pairs that
have a given number of drivers in common.
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Figure B.3: LDA RESULTS STAGE I ‐ BASELINE MODELS

(a) LOGIT ‐ SMD

(b) XGBOOST ‐ SMD

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.4: LDA RESULTS STAGE I ‐ COMPANY MODELS

Notes. Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.5: LDA RESULTS STAGE II ‐ BASELINE MODELS

(a) LOGIT ‐ SMD

(b) XGBOOST ‐ SMD

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.6: LDA RESULTS STAGE II ‐ COMPANY MODELS

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.7: LDA RESULTS STAGE III ‐ BASELINE MODELS

(a) LOGIT ‐ SMD

(b) XGBOOST ‐SMD

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.8: LDA RESULTS STAGE III ‐ COMPANY MODELS

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.9: LDA RESULTS STAGE IV ‐ BASELINE MODELS

(a) LOGIT ‐ SMD

(b) XGBOOST ‐ SMD

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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Figure B.10: LDA RESULTS STAGE IV ‐ COMPANY MODELS

Note: Each panel of the figure shows the performance of less discriminatory alternative (LDA) models. All statistics are
computed on the test data. The y‐axis shows the AUC performance metric. Higher AUC numbers correspond to better
predictive performance. The x‐axis shows the adverse impact metric: the SMD metric with the sign flipped such that points
further to the right represent models with less adverse impact. Colors distinguish between the starting point (baseline) and the
LDA model. Different symbols distinguish between different methods. For the methods represented as lines (since they
suggested many different LDA models), the Baseline Model always corresponds to the top‐left point of the line.
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C PERTURBATION

This appendix describes the perturbation schemes used for the fidelity tests across the three risk areas. The per‐
turbation procedure differs by feature type: binary, categorical, or numerical/continuous. Binary features include
all outlier flags. Categorical features include all features recording missing value codes and 9 categorical features
supplied by the credit bureau data. All remaining features are numerical (these include balances, counts, and ratios).
In our perturbation, we trade off two goals: inducing as many changes as possible and inducing changes into the
favorable direction, that is, reducing the probability of default. We want to choose a consistent direction of change
because we do not want changes in opposite direction to net out when we compare the final change in predictions.
However, we also want to perturb as many features as possible to measure the fidelity of the explanation.
The direction of change is determined in one of two ways: For the baseline perturbation tests, participating

companies and the research team in using open‐source tools were asked to report the direction of the feature
impact. Usually, negative direction implies a favorable impact since we are predicting default risk, given that higher
values correspond to higher predicted default probabilities. For the correlated and random tests, the research team
determined the direction by calculating SHAP feature importance. For local perturbation tests (Adverse Action
Notice), we can use the local SHAP values. For global perturbations, we want to mimic the global feature importance
values provided by the responses. We aggregate the local responses by computing the correlation of individual SHAP
values with feature values. Usually, positive direction implies a negative impact because higher values correspond
to higher predicted default probabilities.

C.1 PARTIAL PERTURBATION

The partial perturbation scheme prioritizes the favorable direction and does not induce a change if it would not lead
to a lower probability of default. We follow the procedure outlined below.

⇒ Binary features. We flip the value of a binary feature if the directional impact suggests a favorable impact on
the prediction (i.e., lower predicted probability of default). Otherwise, we leave the feature unchanged.

⇒ Numerical features. We change the feature by one standard deviation in the favorable direction subject to
the change not violating feasible bounds of the feature in the data. We obtain the standard deviation in the
test data set, omitting the missing value code ‘‐1’ in the calculation. The feasible bounds are the minimum and
maximum values the feature takes in the test data.

⇒ Categorical features. We determine the perturbed level of categorical features by taking into account both
the transition likelihood across levels in the data as well as the feature importance sign of each level. We first
compute a transition matrix across levels of the categorical features by merging in data on the applicants in the
test data from 12 months and 24 months prior to the application date. Based on this panel data, we calculate
transition matrices across levels. We then determine the feature importance associated with each level of
the categorical feature. Finally, we check whether there are levels that have higher favorable impact than the
current level. If these exist, we choose the one with the highest transition probability from that set. If no such
level exists, we leave the feature unchanged.
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C.2 FULL PERTURBATION

The full perturbation scheme prioritizes inducing as many changes as possible. We follow the procedure outlined
below.

⇒ Binary features. We always flip the value of a binary feature regardless of direction.

⇒ Numerical features. We change the feature by one standard deviation in the favorable direction subject to
the change not violating feasible bounds of the feature in the data. We obtain the standard deviation in the
test data set, omitting the missing value code ‘‐1’ in the calculation. The feasible bounds are the minimum and
maximum values the feature takes in the test data. Empirically, we find that this procedure almost always leads
to a perturbation.

⇒ Categorical features. We randomly choose another level of the categorical feature.

D INFERRINGMINORITY STATUS

This appendix provides additional details on the procedure for inferring minority status. The process was performed
as described below using a marketing dataset that was acquired from Infutor that includes name and address infor‐
mation. After performing the calculations for inferring minority status, that information was provided to our data
vendor, which performed a merge with the credit report data and then returned only de‐identified data for analysis.
The process for inferring minority status. We proceeded in two steps: We first used first and last names to

compute a baseline probability and then updated these probabilities using the racial make‐up of the census block
associated with the consumer’s place of residence.
Our first step used two distinct software packages to compute baseline probabilities of race/ethnicity based on

first and last names.
The first package is a proprietary commercial software (Onolytics) developed by Mateos et al. (2014), which is

based on anthropological research on the etymology of first and last names. It is based on a proprietary international
database of over 1 million last names and 500,000 first names. We collapsed the detailed Onolytics categories to
six categories used by the US census.45

The second package is the ethnicolr package developed by Race (1805).46 They model the relationship between
the sequence of characters in a name and race and ethnicity using Florida Voter Registration data as well as database
of 140k name‐race associations from Wikipedia (Ambekar et al. (2009)).
Our second step updated each individual’s baseline racial/ethnic probabilities with the racial and ethnic charac‐

teristics of the census block associated with the consumer’s place of residence using Bayes’ Rule. We computed
posterior probabilities based on an individual’s 2000 address and 2000 census data on racial and ethnic composition
at the block level to create posterior probabilities for the four major racial/ethnic categories used by the US cen‐
sus (Hispanic, non‐Hispanic white, non‐Hispanic Black or African American, and non‐Hispanic Asian/Pacific). The
posterior probability that an individual with name s residing in geographic area g belongs to race or ethnicity r is
then

Pr(r|g, s) = Pr(r|s)Pr(g|r)∑
r′∈R Pr(r′|s)Pr(g|r′)

45These categories are Hispanic, non‐Hispanic White, non‐Hispanic Black or African American, non‐Hispanic Asian/Pacific Islander, non‐
Hispanic American Indian and Alaska Native, non‐Hispanic multi‐racial.
46This is Python package is available at https://github.com/appeler/ethnicolr.
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where R denotes the set of ethnic categories. We then updated this posterior again using an individuals 2010
address and the 2010 census data on racial and ethnic composition.
An individual was assigned to a racial/ethnic category if this category has the highest posterior probability ac‐

cording to both sets of posteriors, and is equal to or above 0.8 on at least one of two sets of posteriors. Wemake one
exception to this rule for non‐Hispanic Black or African American. Onolytics has a relatively high mis‐classification
rate for African‐American names who have last names whose etymological roots are European (e.g. ”Washington”)
and are therefore classified as non‐Hispanic white. To address this problem, we assigned an individual to the non‐
Hispanic Black or African American category if the posterior probability of this category based on the ethnicolr
baseline is equal to or greater than 0.8 even when Onolytics‐based posterior places a high probability on the non‐
Hispanic White category.
This two step method is similar to methods used by the CFPB to construct race in fair lending analysis. CFPB

(2014) and Elliott et al. (2009) show that combining geographic and name‐based information outperforms methods
using either of these sources of information alone.
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