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1. INTRODUCTION
Every week, tens of thousands of consumers and small business owners have their applications 

for credit assessed and effectively decided by machine learning underwriting models.1 The models’ 
greater accuracy and capacity to analyze large, varied forms of data create the potential to increase 
access to credit for millions of people—including disproportionately high numbers of Black, Hispanic, 
and low-income consumers—who are difficult to assess using traditional models and information.2

The growing relevance of machine learning underwriting models and their potentially significant 
effect on consumer and small business credit markets have focused the attention of all stakeholders— 
firms, technologists, advocates, academics, and policymakers alike—on establishing whether and in 
what circumstances these models can be trusted for use in such a sensitive application. Some of these 
questions intensify long-standing concerns about the fairness of automated underwriting systems. 
Other questions focus on whether machine learning models may be more prone to performance dete-
rioration in the face of changing data conditions. In both cases, these issues are heightened by some 
of the very qualities that fuel the greater accuracy of machine learning models—their ability to detect 
more complex relationships than prior generations of models. 

In assessing both the reliability and fairness of machine learning underwriting models, model 
transparency emerges as an urgent threshold question for internal and external stakeholders. With-
out sufficient transparency, neither firms nor their regulators can evaluate whether particular models 
are making credit decisions based on strong, intuitive, and fair relationships between an applicant’s 
behavior and creditworthiness. Yet the same complexity that fuels the accuracy of machine learning 
underwriting models can make it more difficult to understand how a model was developed and how 
it assessed a particular applicant’s creditworthiness. Absent such understanding, lenders may not 
be able to mitigate aspects of a model that affect its reliability and fairness or establish compliance 
with a range of regulatory requirements that apply irrespective of the kind of underwriting model a 
lender chooses to use. 

1  Machine learning refers to the subset of artificial intelligence that gives “computers the ability to learn without being explicitly pro-
grammed.” Artificial intelligence (AI) is a term coined in 1956 to describe computers that perform processes or tasks that “traditionally 
have required human intelligence.” See, e.g., Financial Stability Board, Artificial Intelligence and Machine Learning in Financial Services 
(2017); Ting Huang et al., The History of Artificial Intelligence, University of Washington (Dec. 2006); Arthur L. Samuel, Some Studies in 
Machine Learning Using the Game of Checkers, 3  IBM J. of Research & Development  211-229 (1959); Tom Mitchell, Machine Learning (1997) 
(defining machine learning as the “field of study that gives computers the ability to learn without being explicitly programmed”); Michael 
Jordan & Tom Mitchell, Machine Learning: Trends, Perspectives, and Prospects, 349 Science 255-260 (2015) (defining machine learning as 
“the question of how to build computers that improve automatically through experience”).

2  For instance, more than 50 million U.S. adults lack sufficient traditional credit history to generate credit scores under the most widely used 
models, and prior to the COVID-19 pandemic more than 80 million adults may have struggled to access credit because they were consid-
ered “non-prime.” Information and modelling limitations also make it more difficult for millions of small business owners to obtain credit. 
FinRegLab, The Use of Cash-Flow Data in Underwriting Credit: Market Context & Policy Analysis 12-14 (2020) (hereinafter FinRegLab, 
Cash-Flow Market Context & Policy Analysis). 
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For this reason, new approaches to enabling sufficient transparency to ensure fair and responsi-
ble use of complex models have taken on great prominence in debates about the trustworthiness of 
AI and machine learning systems. Assessing and measuring the trustworthiness of machine learning 
underwriting models is not a purely mathematical or technological problem. Nor is it a challenge 
unique to the financial services sector. But in financial services, emerging data science techniques 
are critical to addressing both the transparency questions about complex models and understand-
ing whether such models can satisfy well-established regulatory expectations regarding reliability 
and fairness. 

However, stakeholders without modelling expertise may not understand well the choices model 
developers make about how to use these techniques when designing and using machine learning  
underwriting models. This report sets forth the range of decisions while designing and implement-
ing underwriting models that affect their reliability, fairness, and inclusiveness and emphasizes 
areas where the transition to machine learning has implications for various stakeholders. It lays 
the foundation for a ground-breaking evaluation of emerging market practices to foster fair and 
responsible use of machine learning underwriting models in consumer credit. FinRegLab’s empirical 
research with Professors Laura Blattner and Jann Spiess of the Stanford Graduate School of Business 
will be the first public research shaped by input from key financial services stakeholders—including 
executives from banks and fintechs, technologists, consumer advocates, and regulators—to address 
questions about explainability and fairness that are likely to shape the nature and pace of adoption 
in the future. 

FinRegLab’s empirical research will evaluate how well a set of open-source and proprietary 
model diagnostic tools help lenders using machine learning models:

 »  Demonstrate the conceptual soundness, performance, and reliability of the models to 
satisfy prudential model risk management expectations;

 »  Identify, measure, and enable mitigation of fair lending risks, particularly whether models 
have a disparate impact on protected classes; and

 »  Provide applicants with individualized adverse action notices explaining why they were 
denied credit or offered less favorable terms.

These research questions involve a set of diverse requirements that apply to consumer lending 
regardless of the type of model being used to make credit decisions. Each one focuses attention on 
important aspects of model transparency and implicates foundational questions about the ability 
to explain, understand, and manage machine learning underwriting models.

The purpose of this research is to inform decision-making by policymakers, firms, industry groups, 
advocates, and researchers as the financial services sector develops norms and rules to govern the 
responsible, fair, and inclusive use of machine learning for credit underwriting. Examining the capabil-
ities and performances of emerging model diagnostic tools in the context of comparatively stringent 
financial services requirements can also inform both the use and governance of machine learning 
in other sectors and the development of more effective data science techniques for explaining and 
understanding these models.

The policy component of this project will identify ways in which existing law, guidance, com-
pliance assessment techniques, and market practices may need to evolve in light of the features, 
benefits, and limitations of currently available approaches to managing the explainability and 
fairness of machine learning underwriting models. 
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Report Overview: This report is designed to:

 »  Document the state of adoption of machine learning underwriting models for  
consumer credit and emerging approaches to enabling necessary transparency and  
managing compliance with a range of requirements focused on reliability and fairness;

 »  Define the context for FinRegLab’s empirical research on the capabilities and  
performance of model diagnostic tools designed to help lenders responsibly use  
machine learning underwriting models; and

 »  Provide a resource to stakeholders, especially non-technical ones, that explains the  
techniques and tools available to lenders to design, operate, and manage machine  
learning underwriting models.

The report highlights specific choices that model developers make when designing and using 
machine learning underwriting models for two reasons. First, these choices have important impli-
cations for the transparency and fairness of machine learning models and for the effectiveness of 
oversight processes. Each decision that a model developer makes is reviewable by modelling peers, 
risk and compliance personnel, and regulators. But those opportunities may come at different points 
in the model lifecycle than for conventional models and may require more work and different tools 
to answer questions about the model’s reliability and fairness for various stakeholders. Second, the 
emergence of an evolving set of techniques and tools designed to help lenders explain, understand, 
and manage complex models has made the use of machine learning for credit risk assessment more 
realistic for firms than it was just a few years ago. As a result, this report seeks to share ongoing 
debates and emerging practices as firms decide how to responsibly implement machine learning 
underwriting models. 

Report Organization: This report has four main sections:

 »  Market Context: This section provides an overview of why firms are interested in using 
machine learning underwriting models and factors likely to affect adoption and use of 
these technologies, including key risks and regulatory considerations. It concludes with a 
survey of the state of adoption of machine learning underwriting models. 

 »  Model Transparency: This section explores the importance of model transparency as a 
threshold question for the trustworthiness of machine learning models, the challenges of 
achieving transparency when using machine learning underwriting models, and the debate 
about whether machine learning underwriting models should be understandable without 
reliance on supplemental models, analyses, or techniques. It then considers options for model 
developers in designing models that can meet the transparency needs of credit underwriting.

 »  Modelling Considerations: This section provides a more detailed description of the decisions 
that individual lenders will make when designing, implementing, and operating machine 
learning underwriting models, including formative considerations like algorithm selection 
and data selection and preparation. These considerations are not necessarily unique to 
machine learning underwriting models, but warrant attention in this context due to their 
potential effect on the performance, fairness, and inclusiveness of the resulting models.

 »  Fairness and Bias: This section addresses a range of issues related to potential bias and 
discrimination in the context of algorithmic lending. It begins by setting out the ways in 
which models and data can each be the source of bias and considers options for reducing 
and measuring bias. It addresses methods for addressing bias in such models and emerging 
approaches to measuring fairness in the model development process. 
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The Market Context section presents the landscape related to the use of machine learning 
models in largely non-technical terms. Readers interested in more technical treatment of issues and 
debates introduced in that section will find that content in the subsequent sections. These more 
technical sections present a range of modelling considerations, including specific options available 
to model developers to enable model transparency, in roughly the same sequence that developers 
will address them and with an eye toward highlighting specific decisions made about the design 
and use of the model. 

The conclusion looks ahead to open questions that policy, industry standards, or market prac-
tices might address to promote responsible, fair, and inclusive use of machine learning for credit 
underwriting.

The report also contains a glossary of terms and appendices providing greater detail on legal 
and regulatory requirements and data science fairness metrics to provide readers with a reference 
resource and additional background as they read particular sections of the main text.

Methodology: To prepare this report, FinRegLab conducted a series of interviews with indus-
try leaders, regulators, consumer advocates, and others to explore issues related to use of machine 
learning, including types of models and explainability techniques currently in use, experiences with 
various forms of machine learning underwriting models, key challenges in designing and implement-
ing machine learning underwriting models, and emerging risk management practices related to these 
models. In addition to interviews, FinRegLab gained insights from discussions with the Advisory Board 
that it has convened for purposes of the broader research project. This Advisory Board is composed 
of subject-matter experts from computer science, economics, financial services, and law, and rep-
resents more than 40 major institutions from all relevant sectors: bank and nonbank financial services, 
technology, policy, advocacy, and academia. State and federal regulators participate on the Advisory  
Board as observers. FinRegLab reviewed academic and industry literature on a range of issues 
related to topics such as machine learning interpretability and explainability, algorithmic fairness, 
trustworthy and ethical AI, financial inclusion, and regulatory compliance.

Key Findings: FinRegLab’s survey of market practices suggests bank and nonbank lenders are 
currently using machine learning underwriting models and that many more firms across the market 
are looking closely at adopting them. In particular, this report finds:

 »  Motivations to Use Machine Learning: Lenders are attracted to machine learning models’ 
potential to improve the accuracy of credit risk assessment and reduce losses, to speed up 
the process of updating and refitting models, and to keep pace with market competitors. 
Many also cite the ability of machine learning models to leverage large, diverse datasets 
as a motivation. Nonbank usage is more established due to a number of factors, including 
reliance on digital business models, newer lending platforms, and differences in the nature 
and maturity of risk management and oversight processes.

 »  Usage by Market: Credit cards and unsecured personal loans are the markets in which use 
of machine learning models to make credit decisions is most advanced. This reflects the 
historical position of credit cards as being at the analytical forefront of consumer finance 
and the dominance of digital lending in unsecured personal loans. Auto lending and small 
business lending are also areas where machine learning underwriting models are in use.3

 »  Importance of Transparency: Irrespective of the form of machine learning used, stake-
holders of all kinds agree that a high degree of transparency is needed when machine 
learning is used to make credit decisions in order to enable appropriate management and 

3 See Megan Jarrell, Artificial Intelligence at Square—Two Use-Cases, Emerj (Sept. 6, 2021).
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oversight. Accordingly, as set forth in Section 3, concerns about the ability to explain and 
understand complex models shape lenders’ decisions at every stage of the process of 
developing, implementing, and managing machine learning underwriting models. 

 »  Enabling Transparency: In light of these explainability concerns, some firms impose con-
straints to reduce the complexity of the resulting model and improve its transparency. Other 
lenders opt to use post hoc explainability techniques—supplemental models, analyses, or 
methods—to make complex or black box models more transparent. Whether constraints 
unduly inhibit the performance of machine learning underwriting models is contested in aca-
demia and industry. So are the capabilities, performance, and trustworthiness of common 
post hoc explainability techniques.

 »  In-House Development: Decisions about whether to develop machine learning underwrit-
ing models or supplemental model diagnostic tools in-house or to rely on vendors depend 
on the overall size of the lender and the size and technical sophistication of the business 
unit considering adoption of machine learning. Many firms are likely to lack the resources—
foremost among them personnel with appropriate data science and credit expertise— 
to develop and operate such models on their own.4

 »  Role of Third-Parties: To meet this need, a number of third-party providers have entered this 
market, including score providers, technology firms, and consulting firms. The business models 
and offerings of these providers vary. Some offer model diagnostic tools as a stand-alone 
product, while others provide those tools in the context of model development services. 

 »  Fairness Implications: Firms and regulators are also focusing on whether and in what 
circumstances the use of machine learning can improve fair lending oversight, including 
improving available tradeoffs between performance and fairness when mitigating sources 
of adverse impacts in credit decisions.

Yet while interest in machine learning underwriting models is accelerating, the scope and pace 
of adoption going forward will depend on the extent to which a broad range of stakeholders can 
answer fundamental questions about the trustworthiness of machine learning models, includ-
ing how to enable necessary oversight. Concerns about the trustworthiness of machine learning 
models are being raised in a broad range of sectors with regard to general transparency, reliability, 
fairness, privacy, and security. But they are particularly pressing in credit underwriting because 
existing legal and regulatory frameworks force consideration of risk management questions more 
holistically and at an earlier stage than occurs elsewhere. The balance of the report focuses on out-
lining the choices that lenders face in developing, implementing, and monitoring machine learning 
models and emerging developments on explainability and fairness from the broader data science 
community that may help to shape market and regulatory practices concerning machine learning 
underwriting models.

Building on these market and data science developments, the conclusion briefly looks ahead 
to open questions that policymakers or firms might address to promote fair and responsible use 
of machine learning for credit underwriting. In addition to the forthcoming empirical evaluation 
of several model diagnostic tools, future reports will explore the potential evolution of law, policy, 
regulation, and market practice in greater detail.

4  According to a 2020 survey of 175 Lendit subscribers, across both large and small institutions, approximately 20% of institutions had no 
in-house staff for credit modelling and relied on third parties to conduct such activities. Even large institutions with credit modelling 
teams did not devote significant resources, as just 16% of large institutions had four or more full time modelers. Cornerstone Advisors, 
Credit Monitoring and the Need for Speed: The Case for Advanced Technologies 4, Figure 4 (Q2 2020).
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2.  MARKET CONTEXT 
Lenders have relied on automated systems to assess applications for consumer and small busi-

ness credit for decades. Reliance on such underwriting systems has brought significant marketwide 
benefits: reduced defaults, underwriting costs, and loan pricing; expanded access to credit; improved 
consistency of treatment of similarly situated borrowers; and increased competition for borrowers.5 
But these benefits are not distributed evenly. For instance, a particular limitation of automated 
underwriting systems is that they require standardized information about credit applicants that can 
be obtained relatively quickly and inexpensively. But the credit information system that has evolved 
to support automated underwriting lacks sufficient information on about 20% of U.S. adults to gen-
erate scores under the most widely used models.6 Communities of color and low-income populations 
are substantially more likely to be affected by these information barriers than other applicants. For 
example, nearly 30% of Black and Hispanic people cannot be scored using the most widely adopted 
credit scoring models, compared to about 16% of whites and Asians.7

As advances in computing power and creation of digital information have accelerated, inter-
est in using machine learning to develop credit underwriting models is also increasing. Traditional 
automated underwriting systems rely on linear and logistic regression which identifies a set of 
variables with the strongest correlation to a particular outcome (such as loan performance) and 
assigns a weight to each variable in the model. Machine learning models are able to incorporate 
large volumes of diverse types of data into their analysis and discern relationships that may not 
be detectable through incumbent regression models, thereby generating more accurate predictions. 

5  Board of Governors of the Federal Reserve System, Report to Congress on Credit Scoring and Its Effects on the Availability and Affordabil-
ity of Credit S-2 to S-4, O-2 to O-4, 32-49 (2007); Allen N. Berger & W. Scott Frame, Small Business Credit Scoring and Credit Availability, 
47 J. of Small Bus. Mgmt. 5-22 (2007); Susan Wharton Gates et al., Automated Underwriting in Mortgage Lending: Good News for the 
Underserved?, 13 Housing Policy Debate 369-391 (2002); FinRegLab, Cash-Flow Market Context & Policy Analysis at 11 n.16.

6  Consumer Financial Protection Bureau, Data Point, Credit Invisibles at 4-6, 17 (2015); FinRegLab, Cash-Flow Market Context & Policy 
Analysis § 2.2. Small business owners and applicants with marred credit histories are also groups that face particular information barriers 
and access challenges. FinRegLab, Cash-Flow Market Context & Policy Analysis § 2.2. The risk that conventional credit scoring models err 
in predicting default risk also appears higher for consumers with relatively thin credit files. Laura Blattner & Scott Nelson, How Costly Is 
Noise? Data and Disparities in Consumer Credit, arXiv:2105.07554v1 (2021); see also Oportun, Response to Agencies’ Request for Informa-
tion and Comment on Financial Institutions’ Use of Artificial Intelligence, Including Machine Learning 2 (Jul. 1, 2021) (estimating based on 
internal analyses that 55 million consumers with limited credit histories may be misscored).

7  Racial disparities regarding access to credit are far greater than for more basic transaction accounts, for instance. For example, a 2017 Fed-
eral Deposit Insurance Corporation survey found that about 10% of Black and Hispanic households lacked bank and/or prepaid accounts, 
while more than 30% of both groups reported not having mainstream credit accounts of the type that are likely to be reported to credit 
bureaus. FinRegLab, Market Context & Policy Analysis § 2.2; Federal Deposit Insurance Corporation, 2017 National Survey of Unbanked 
and Underbanked Households (2018). In a subsequent survey, the percentage of Black and Hispanic households who lack bank or prepaid 
accounts stayed about the same, but the question about credit was not repeated. Federal Deposit Insurance Corporation, 2019 National 
Survey of Unbanked and Underbanked Households (2020).
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Such models and data have been used by lenders for decades to detect fraud in credit card trans-
actions and more recently to identify new variables for use in traditional underwriting models 
through a process known as feature engineering.8 However, adoption of machine learning models to 
make credit decisions has been slower than in other sectors due to a combination of business and  
regulatory factors that intensify concerns about the trustworthiness of predictive models. 

This overview of the market context for use of machine learning underwriting models addresses: 
motivations for using these models; key issues related to adoption, including risks and regulatory 
compliance considerations; and the state of usage by lender type, model type, and product market. 
Subsequent sections of the report examine in greater detail a range of model design and imple-
mentation choices available to individual firms, such as forms of machine learning relevant to 
underwriting models and options for enabling transparency in those models. The Glossary provides 
simple definitions for key terms that are referenced in Section 2 and discussed in greater depth in 
later sections.

2.1 Motivations for Using Machine Learning Underwriting Models
Lenders and credit score developers are exploring the use of machine learning techniques to 

improve their ability to predict credit risk, with or without new data sources. These techniques have 
the potential to achieve benefits which, if realized, would serve goals broadly shared by borrowers, 
firms, policymakers, and investors alike:9 

 »  Expanding access to more borrowers who are creditworthy and reducing the number 
of people who are offered credit on terms that they are unlikely to be able to repay by 
improving the accuracy of predictions of default risk

 » Reducing default rates and losses

 »  Reducing mispricing based on inaccurate estimation of the likelihood of default and 
improving terms at which credit is offered to some applicants

 » Improving identification and mitigation of certain forms of discriminatory lending

 » Facilitating less costly and faster model generation and updating 

Many of these benefits may be enhanced where lenders also incorporate new forms of credit 
information—particularly alternative financial information such as cash-flow information from 
bank or prepaid accounts (see Box 2.1).10 This is especially likely to be true as to potential inclusion 
benefits of using machine learning to assess applicants whose creditworthiness is not accurately 
scored or cannot be assessed using incumbent models and data sources.11

8  Throughout this report, the terms variable, feature, and attribute are used as synonyms.”
9   FinRegLab, Cash-Flow Market Context & Policy Analysis at 8-12; CFPB, Credit Invisibles at 4-6; Peter Carroll & Saba Rehmani, Alternative 

Data and the Unbanked, Oliver Wyman (2017).
10  See, e.g., Peter Rudegeair & AnnaMaria Andriotis, JPMorgan, Others Plan to Issue Credit Cards to People With No Credit Scores, Wall St. J. 

(May 13, 2021) (announcing an effort by a group of large U.S. banks to utilize alternative financial data such as deposit account data to 
extend credit to applicants with no or thin traditional credit history); Brendan Pedersen, OCC Announces Initiative to Expand Credit Access 
in Los Angeles, Am. Banker (Oct. 30, 2020). Because machine learning models can use more information to determine creditworthiness, it 
is easier for lenders to incorporate alternative financial information into the modelling process. BLDS, LLC et al., Machine Learning: Con-
siderations for Fairly and Transparently Expanding Access to Credit 6 (2020).

11  FinRegLab, Cash-Flow Market Context & Policy Analysis § 2.2; Blattner & Nelson.
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Interest in data diversification is fueling some of the interest in machine learning given its superior 
ability to analyze large volumes of data and data of different kinds.12 Even for lenders who are not 
primarily motivated by data considerations, the operational overhaul required for widespread use of 
machine learning models likely creates a rare opportunity to reset lending platforms to manage use 
of alternative data types and feeds from a variety of sources with relatively little additional cost. 

The adoption of machine learning underwriting models is also intensifying interest in other ini-
tiatives to improve the efficiency, fairness, and inclusiveness of lending. For example, the technology 
sector’s focus on how to enable appropriate explanations of machine learning models’ predictions has 
focused attention on whether lenders can and should improve the information given to unsuccessful 
credit applicants by providing more actionable information. Generating more actionable information 
in this context does not necessarily require machine learning, but the advent of machine learning 
underwriting models may nevertheless drive the industry toward this practice.

The remainder of this subsection considers in greater detail lenders’ motivations for using machine 
learning underwriting models in the following areas: performance; fairness and inclusion; consumer 
protection and empowerment; and operational efficiency. Whether and in what form individual firms 
realize any of these benefits will depend on how they view the business rationale for using machine 
learning in a specific context and specific choices they make in developing, implementing, and using 
particular models. 

2.1.1 Performance
Machine learning models’ potential to provide more accurate predictions of applicants’ likeli-

hood of default is a primary motivation for firms that have replaced or are considering replacing 

12  BLDS, LLC et al. at 6. 

BOX 2.1   SOURCES OF CREDIT INFORMATION

The shift to machine learning underwriting models 
may be tied both to diversifying the kinds of data used 
for credit risk assessment and improving the inclusive-
ness of lending decisions. As discussed in more detail 
in Section 4.2.1.1, several types of information are 
attracting interest for use in credit underwriting:

 »  Credit Information: Traditional credit 
reporting agency records typically contain 
applicants’ personal information; public 
records such as bankruptcies, tradeline data 
which reflect that person’s repayment record 
mainly for secured and unsecured loans; 
inquiries made on the applicant’s credit files; 
and loan balance information.a

 »  Alternative Financial Data: Alternative 
financial data refers to categories of non-
lending financial activity that traditional credit 
bureau information does not contain, such as 
inflows and outflows from bank or prepaid 
accounts. 

 »  Behavioral Insights in Alternative Financial 
Data: This refers to information about 

consumers' behavior that is derived from 
transaction-level financial information and 
includes information such as where and when 
they shop and in some circumstances what 
they buy. This may also include segregating 
transactions into discretionary purchases and 
tracking metrics designed to show how an 
individual manages those against fluctuations 
in income. 

 »  Non-Financial Alternative Data: This group 
refers broadly to data about a person’s 
activities that are not financial in nature or 
derived from financial data. Social media data, 
search histories, and social connectedness 
metrics are common examples.b

While researchers and lenders in some developing 
countries are focusing on non-financial alternative 
data sources such as cell phone use, lenders in the U.S. 
are generally concentrating on alternative financial 
information. 

a    Carroll & Rehmani. 
b    See Agarwal et al.; Berg et al.
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incumbent underwriting models. At its best, improved accuracy will result in fewer borrowers being 
offered loans they are unlikely to be able to repay and more qualified borrowers being approved 
for credit. Given that the decision to provide access to credit and the terms on which credit will be 
provided depend on predictions of default risk (see Box 2.1.1), even small improvements in predictive 
accuracy can produce wide-ranging benefits for firms, borrowers, and some applicants for credit. 

Some public research suggests that machine learning underwriting models can offer significant 
improvements in performance. For example, several studies have found substantial gains in terms 
of predictiveness and cost savings for lenders from using machine learning models relative to con-
ventional models. A study assessing commercial loans in Greece showed that two types of machine 
learning models outperformed logistic regression models in assessing credit, and a U.S.-based 
mortgage study found a machine learning model to outperform both linear and non-linear logistic 
regression models.13 Similarly, some lenders that use machine learning underwriting models have 
conducted their own analyses, with one such study finding that a machine learning underwriting 
model would have resulted in 75% fewer defaults than the models used by three large U.S. banks.14 
Further, a study looking at machine learning models that use both credit bureau and transaction 
account data between 2005-2009 for the United States found that use of machine learning models 

13  Anastasios Petropoulos et al., A Robust Machine Learning Approach for Credit Risk Analysis of Large Loan Level Data Sets Using Deep 
Learning and Extreme Gradient Boosting, Bank for International Settlements (2018) (showing that a common performance metric—the 
area under the ROC curve—for the study’s neural network model was 9% higher than its logit model, and 18% higher for its extreme 
gradient boosting model); See also Andreas Fuster et al., Predictably Unequal? The Effects of Machine Learning on Credit Markets, J. of 
Finance (forthcoming) (Jun. 21, 2021) (finding that a random forest model outperformed linear and non-linear logistic regression models 
by 1.4% and 0.8% respectively in terms of AUC when using mortgage data for the United States). 

14  Upstart, Results to Date § 2, upstart.com (visited Jul. 29, 2021).

BOX 2.1.1   RISK-BASED PRICING

Risk-based pricing refers to a common approach 
for determining the cost of credit. In this approach, 
lenders base the price of their offer of credit on their 
estimate of an individual applicant’s likelihood of 
default. This generally means that applicants with a 
good credit score will be offered lower interest rates, 
whereas those who have previously fallen behind on 
loan payments or declared bankruptcy will receive 
more expensive offers for loans of the same kind  
and amount.

Stakeholders fiercely debate the fairness and inclu-
sion effects of risk-based pricing. Proponents argue 
that it has increased access to credit by giving lenders 
confidence that they can cover somewhat higher losses 
when extending credit to somewhat riskier borrowers 
that they would otherwise reject. Critics counter that 
risk-based pricing systems increase the likelihood of 
default for higher-risk borrowers because loan pay-
ments are less affordable and sometimes impose 
higher charges than necessary to cover lenders’ losses.

Adoption of machine learning may heighten the 
strengths and weaknesses of risk-based pricing. The 
ability of machine learning underwriting models to 
assess more data and data of different kinds and to 
identify more predictive relationships can result in 

more accurate credit risk assessments, especially for 
those who are hard to score using traditional meth-
ods and data. This improved accuracy may ultimately 
lower the cost of credit for some consumers and 
improve access to credit for others, just as it did with 
the onset of automated underwriting in the 1970s.

But the improved accuracy of machine learning 
models could lead to some applicants being assessed 
as higher risk than under traditional models, causing 
their cost of credit to increase or their applications to 
be denied. Some studies suggest that pricing disparities 
for particular groups could increase at the same time 
that approval disparities decline if machine learning 
models predict that previously excluded applicants are 
at somewhat higher risk of default.a More research is 
needed to understand how these effects could play 
out in practice, especially with respect to shifts within 
and across communities that are most deeply affected 
by flaws in the current system. If deeper insights into 
customer risk intensify the effects of risk-based pricing 
on vulnerable populations, stakeholders will need to 
focus on how to respond to the credit needs of those 
populations. 

a    See Fuster et al.

http://upstart.com
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can result in cost savings from accurately predicting the risk profiles of credit card borrowers, and 
under a conservative set of assumptions, estimated the savings to be 6 to 25% of total losses.15

For consumers, lending that uses more accurate risk assessment methods can improve access for 
certain individuals or groups and reduce the cost of certain products for others.16 For firms, improved 
performance in making default predictions can translate to reduced costs and opportunities to 
expand lending within existing customer segments and to new customer segments, especially those 
not well served by existing risk assessment methodologies. Both sets of considerations may also 
be attractive to investors, whether they provide funding directly or through securitization markets.

2.1.2 Fairness and Inclusion
The potential for machine learning models to help improve the fairness and inclusiveness of 

lending decisions appeals to a broad range of stakeholders—lenders, risk information service pro-
viders, advocates, academics, regulators and policymakers. Stakeholders are particularly focused 
on the potential to improve credit risk assessment and lending decisions with respect to applicants 
with little to no prior credit history and those whose credit history is marred, both of which struggle 
to access affordable credit under current models and data sources. For these groups, the higher pre-
cision or accuracy that machine learning models can achieve may be important to the development 
of business models that support lending across a broader swath of the risk spectrum. For example, 
VantageScore Solutions reports that its use of machine learning to assess consumers who are not 
scorable under some third-party models because their credit histories have not had an update in the 
prior six months resulted in an accuracy improvement of 16.6% for bank card originations and 12.5% 
improvement for auto loan originations.17 

Stakeholders are particularly focused on the potential of machine learning methods to help 
improve the fairness and inclusiveness of lending decisions in two additional ways: facilitating use 
of non-traditional credit data and improving identification and mitigation of disparities, especially 
with respect to assessing less discriminatory alternatives. As discussed above, the desire to assess 
larger datasets and incorporate less standardized information is an important general motivation 
for adopting machine learning underwriting models.18 The transition to machine learning underwrit-
ing models does not in the first instance necessitate a change in the information being assessed 
when reviewing applications for credit. But, as discussed further in Section 4.2, the move to more 
sophisticated and flexible analytical methods could facilitate data diversification over time, which 
may significantly improve firms’ ability to responsibly serve populations at the margins of current 
lending practices.19

15  Amir E. Khandani et al., Consumer Credit-Risk Models via Machine-Learning Algorithms, 34 J. of Banking & Finance 3 (2010); see also Flo-
rentin Butaru et al., Risk and Risk Management in the Credit Card Industry, 72 J. of Banking & Finance 218-239 (2016) (finding decision tree 
and random forest models that considered tradeline data, credit bureau information, and macroeconomic indicators each outperformed 
a more traditional logistic regression model when forecasting credit card delinquencies). 

16  Upstart, for example, has argued that improved accuracy from its use of AI in underwriting decisions has allowed it to extend credit 
to those who would otherwise be left out by traditional models and provide those consumers with more favorable pricing. Upstart, 
Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, Including Machine 
Learning (Jul. 1, 2021). An internal study conducted by Upstart found that it was able to offer 50% more loans to consumers with an 
income less than $50,000 than its benchmark group. Upstart, Blog, Upstart By the Numbers (undated). Oportun, which estimates that it 
assisted more than 900,000 consumers who lacked FICO scores begin to build credit history since its inception, reports that it has devel-
oped machine learning models based on alternative data, credit bureau records, and proprietary historical data that can score 100% of 
applicants. Oportun, Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, 
Including Machine Learning at 2-3.

17  VantageScore, Our Models, vantagescore.com (visited Jul. 29, 2021).
18  BLDS, LLC et al. at 6. 
19   Blattner & Nelson (suggesting that the combination of machine learning underwriting models and alternative data, such as cash-flow 

data, is required for greater financial inclusion).

http://vantagescore.com
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Adoption of machine learning underwriting models may also have the potential to improve 
identification of discrimination risks and to offer superior mitigation options when those risks are 
detected.20 This may result in detecting risks not registering fully in current processes and enabling 
the use of models that retain the predictive power of variables and relationships causing dispari-
ties instead of having to eliminate those features entirely. Unlike incumbent underwriting models, 
the development of machine learning models enables consideration of many iterations of a model, 
including many changes to a model’s specifications, which can enhance predictive power and enable 
more explicit consideration of certain tradeoffs.21 Lenders can assess those iterations to find “less 
discriminatory models that maintain their predictive ability.”22 The transition to machine learning is 
also inspiring consideration of how to incorporate growing sophistication in approaches to measuring 
algorithmic fairness in model development and oversight processes.23

2.1.3 Consumer Empowerment
The use of machine learning underwriting models can serve the broader purpose of empowering 

consumers. In the most basic sense, this can occur by expanding access to core foundational products 
and services and improving the terms on which they are provided. But debates about responsible use 
of machine learning underwriting models have also focused attention on potential improvements to 
disclosures that lenders must send customers who have been denied credit or offered it on materially 
less favorable terms than other applicants. What would constitute more actionable information is 
open to debate but a more expansive understanding of this concept points to including information 
on these disclosures that could help consumers understand how changes in their financial behavior 
and positioning could lead to more favorable credit decisions in the future. 

2.1.4 Operational Efficiency 
Use of machine learning underwriting models can improve the speed and efficiency of model 

development in a variety of respects. As noted above, use of machine learning enables generation 
and evaluation of a larger set of options than is feasible with conventional models, which can give 
developers a broader set of options to build more accurate and fairer models. It can also improve 
the agility of firms’ ability to adapt to changing conditions. Machine learning models may reduce the 
need for additional underwriting guidelines—often called overlays—because their ability to assess 
a greater number of features and more complex relationships among features can reflect changes 
in lending conditions—through for example trended analysis showing interplay of the model and 
macroeconomic variations—that are difficult to incorporate directly into incumbent models. Finally, 
although implementing updates to credit underwriting models in response to economic shifts still 
requires accumulation of significant amounts of data, the process of creating the code automatically 
for models and model updates in most cases accelerates the effort to get new models ready for use. 
This agility can be particularly important in response to sudden shocks and useful in managing credit 
line changes and capital analyses.

20   Florian Ostmann & Cosmina Dorobantu, AI in Financial Services, The Alan Turing Institute 37 (2021).
21  BLDS, LLC et al. at 6. 
22  Id. at 22.
23   See Section 5.2.



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
14

Section 2: Market Context

2.2 Risks and Trustworthiness Concerns 
While machine learning’s potential benefits in credit underwriting are appealing, these technolo-

gies have also intensified long-standing debates about automated decision-making. Data scientists, 
academics, industry practitioners, advocates, and policymakers are all turning their attention to 
how to identify and measure the trustworthiness of AI and machine learning systems. This inquiry 
is broader than credit or financial services alone (see Box 2.2), but examining core concerns about 
the potential risks of complex underwriting models offers a compelling case study in that larger 
conversation, given that extensive legal and regulatory frameworks force consideration of questions 
about machine learning’s trustworthiness more holistically and at an earlier stage than occurs in 
other sectors.

This section considers the elements of trustworthiness that are of most concern with regard to 
the adoption of machine learning underwriting models, including a discussion of transparency both 
as an element that is important in its own right and as instrumental to diagnosing and managing 
other risks. Section 2.3 provides an overview of the existing regulatory frameworks for managing 
regulatory risks that make model transparency particularly important in managing machine learning 
underwriting models.

2.2.1 Performance
Performance is a fundamental element of trustworthiness since there is little reason to adopt 

machine learning models if they do not improve on the accuracy of incumbent systems in predicting 
default risk or other key outcomes. Beyond evaluating whether a particular model’s predictions meet 
the accuracy needs for its use case, a second key aspect of performance relates to the robustness of 
the model’s performance in unexpected conditions. 

On this second aspect of reliability, machine learning models’ ability to identify a wider range 
of relationships in training data than incumbent models may increase their susceptibility to perfor-
mance problems due to two issues: (1) overfitting, or the risk that the machine learning algorithm 
fits the predictive model too narrowly to the specific characteristics of training data; and (2) data 
drift, which can occur when conditions in deployment start to differ from the data on which a model 
was trained, for instance due to shifts in consumer behavior, populations, or economic conditions. 

2.2.2 Fairness and Inclusion
Concerns about whether and how machine learning underwriting models could negatively impact 

populations who have historically been subject to discrimination, exclusion, or other disadvantage 
are a second component of trustworthiness. This concern is broader than establishing compliance 
with anti-discrimination laws and includes more fundamental questions about data gaps, modelling 
decisions, and other issues that can affect the performance of models for particular groups. 

Machine learning models’ ability to identify a wider range of relationships in training data also 
heightens concerns about the risk of replicating or even amplifying historical disparities in the credit 
context. For instance, some models rely on “latent features” that are identified by the learning algo-
rithms from relationships in the input data rather than intentionally programmed into the models 
by developers. This raises concerns that the models could reverse engineer applicants’ race or gender 
from correlations in input data or create complex variables that have disproportionately negative 
effects on particular groups, but that developers would have difficulty diagnosing or mitigating such 
problems due to the complexity of the models. 
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Recent research also questions whether using machine learning underwriting models without 
diversified data will produce substantial inclusion effects. One academic study of machine learning 
underwriting models using conventional data to assess applicants for mortgages concluded that 
modest improvements in application approvals among Black and Hispanic applicants would likely 
be more than offset by increased pricing differentials for those groups where risk-based pricing is 
used (see Box 2.1.1).24 Another academic study shows that credit scores for minority groups gener-
ally reflect significantly more signal noise—that is, they are subject to more random, unpredictable 
errors that make it hard to isolate their effect on default risk—than other applicants. This in turn 
may limit the inclusion effects of using machine learning models without data diversification.25

The transition to machine learning may also impede the effectiveness of fair lending oversight. 
The task of assessing and mitigating the effects of variables or relationships used by machine learn-
ing models is potentially more complex than in incumbent models, which may make efforts to 
identify disparate impact risks less effective than with conventional models.26 

24   Fuster et al.
25   Blattner & Nelson.
26  See Section 2.3.2 of this report for a detailed description of disparate impact. 

BOX 2.2   INTERNATIONAL EFFORTS TO ASSESS THE TRUSTWORTHINESS OF AI AND MACHINE LEARNING SYSTEMS

Data scientists, academics, industry practitioners, 
advocates, and policymakers across multiple eco-
nomic sectors and countries are turning their attention 
to how to identify and measure the trustworthiness 
of AI and machine learning systems. These inquiries 
are seeking to harmonize foundational principles with 
two objectives. First, this dialogue can support devel-
opment of a broad consensus about the responsible 
use of Al and machine learning across jurisdictions, 
markets, and use cases. Second, that consensus can 
in turn serve as the basis for efforts to articulate and 
adapt sector-specific technological standards and 
regulatory requirements to encourage responsible 
adoption and use. 

The elements of trustworthiness that are discussed 
in the main text—performance, fairness and inclusion, 
privacy and other consumer protections, security, and 
transparency—are among the most common cited 
across these various initiatives. The European Union’s 
recent proposed regulations to “promote trustworthy 
AI that is consistent with Union values and interests” 
build on a 2019 European Commission formulation of 
seven key requirements for trustworthy AI: human 
agency and oversight; technical robustness and 
safety; privacy and data governance; transparency; 
diversity, non-discrimination and fairness; societal 
and environmental well-being; and accountability.a 
Other general frameworks for ethical/trustworthy AI 

include Ostmann & Dorobantu (five principles of AI 
ethics, which include fairness, sustainability, safety, 
accountability, and transparency); Brian Stanton & 
Theodore Jensen, Trust and Artificial Intelligence, 
National Institute of Standards and Technology (Dec. 
2020) (nine characteristics of trustworthy AI: accuracy, 
reliability, resiliency, objectivity, security, explainabil-
ity, safety, accountability and privacy); Organisation 
for Economic Co-operation and Development, Rec-
ommendation of the Council on Artificial Intelligence 
(2019) (six key principles: inclusive growth, sustainable 
development and well-being; human-centered values 
and fairness; transparency and explainability; robust-
ness, security and safety; and accountability).

In time, policy processes are needed to promulgate 
broadly applicable approaches to what transparency 
or fairness, for example, should mean in the context 
of responsibly using AI and machine learning systems. 
In considering these questions, it is likely that the 
standards that emerge will apply even to traditional 
models and thus the debates renewed and intensified 
by the adoption of this machine learning can drive 
the broader financial system and other sectors to 
enhanced efficiency, fairness, and inclusiveness. 

a    See European Commission, Proposal for a Regulation Laying Down 
Rules on Artificial Intelligence (2021); European Commission, 
Building Trust in Human Centric Artificial Intelligence (2019).
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2.2.3 Privacy and Other Consumer Protections
The ability of machine learning underwriting models to analyze large, diverse datasets and cre-

ate deeper, more personalized profiles of consumers is closely tied to their potential benefits for 
accuracy and inclusion but can also raise significant questions about privacy, fairness, and data 
protections. This is especially true where the models use elements that feel personally intrusive or 
lack an intuitive link to creditworthiness. 

In credit underwriting, for example, where models rely on behavior with unintuitive connections 
to creditworthiness, consumers may lack meaningful opportunities to anticipate the relationship 
between their behavior and future assessments of their creditworthiness.27 To the extent that inclu-
sion or other benefits of machine learning underwriting models depend on an applicant’s consent to 
make certain kinds of data available for credit risk assessment, this may raise fairness questions as 
to those unable or unwilling to do so.28 Other concerns include what constitutes informed consumer 
consent to data access, rules regarding data retention and use, and provision of explanations of deci-
sions made by automated systems in both identifying errors and enabling consumers to manage how 
their data are being used.29

While these issues are not unique to machine learning underwriting models specifically, they 
receive heightened attention in the machine learning context due to strong interest in pairing 
advanced analytical techniques with non-traditional data sources. Challenges with regard to the 
complexity and explainability of machine learning models also increase concern about what data 
are being used for what purposes.

2.2.4 Security
The potential for machine learning models to rely on more granular and sensitive data also can 

heighten concerns about information security.30 In addition to increasing the potential consequences 
of security breaches, for instance, stakeholders have identified novel risks in some other machine 
learning contexts. For example, research suggests that AI systems can be manipulated without direct 
access to their code,31 for example by maliciously embedding signals in social network feeds or news 

27   Ostmann & Dorobantu at 40. 
28   This issue has been raised as a point of concern with respect to data access and non-machine learning models. FinRegLab, Cash-Flow 

Market Context & Policy Analysis § 6.3 (considering circumstances when underserved borrowers are asked to provide this information in 
order to access credit while prime borrowers can rely on traditional credit data); see also Ostmann & Dorobantu at 40. 

29   For example, experts continue to debate the extent to which the European Union’s General Data Protection Regulation (GDPR) implies a 
“right to explanation” related to the use of AI or machine learning models. See Riccardo Guidotti et al., A Survey of Methods for Explaining 
Black Box Models, 51 ACM Computing Surveys art. 93 at 2 (2018) (assessing whether Articles 13-15 and Article 22 of the GDPR at least 
implicitly require a “right to explanation”); see also Sandra Wachter et al., Why a Right to Explanation of Automated Decision-Making Does 
Not Exist in the General Data Protection Regulation, International Data Privacy Law (2017) (posits that the GDPR lacks precise language 
and explicit and well-defined rights and safeguards concerning automated decision-making needed to bolster a right to explanation); 
Andrew Burt, Is There a ‘Right to Explanation’ for Machine Learning in the GDPR?, International Association of Privacy Professionals (2017) 
(provides textual analysis of the GDPR with respect to a right to explanation for machine learning and recommendations to ensure com-
pliance in the deployment of machine learning systems).

30   See generally Andrew Burt & Patrick Hall, What to Do When AI Fails, O’Reilly Radar (2020) (outlines a broad framework for responding to 
“any behavior by the model with the potential to cause harm, expected or not,” including both potential privacy and security violations 
and incorrect predictions); Sophie Stalla-Bourdillon et al., Warning Signs: The Future of Privacy and Security in an Age of Machine Learn-
ing, Future of Privacy Forum (2019) (outlines a risk-based framework for privacy and security standards in machine learning systems and 
suggests potential mitigation strategies).

31   Nicolas Papernot et al., Practical Black-Box Attacks against Machine Learning, Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security 506-519 (2017) (demonstrating how machine learning models, in this case deep neural networks, are 
vulnerable to black-box adversarial attacks).
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feeds that are not detectable by humans.32 Further, because machine learning models encode aspects 
of training data into the mechanisms by which they operate, they have the potential to expose 
private or sensitive information from the training data to users.33 In consumer credit there may be 
additional concerns that certain required explanations about a model’s predictions could expose 
information about the individual applicants or the underwriting model used to assess their credit-
worthiness.34 

2.2.5 Transparency
Model transparency—the ability of stakeholders in a particular model to access various kinds of 

information about its design, use, and performance—is a final critical element in trustworthiness. 
Transparency is an important element of trustworthiness in its own right, because it increases stake-
holders’ confidence in procedural fairness, consistency, and accountability. In consumer credit, laws 
requiring lenders to provide applicants with a list of the principal reasons for adverse decisions serve 
this aim by enabling error correction in underlying credit information and educating consumers about 
what factors may affect their ability to access credit over time. 

Transparency is also often critical for helping to diagnose and manage other aspects of trust-
worthiness, such as reliability and fairness. For example, understanding which variables are driving 
model outcomes can be important to assessing a model’s potential sensitivity to changing condi-
tions and to diagnosing and mitigating the sources of demographic disparities in model outcomes. 
As discussed further in Section 2.3, several regulatory regimes for consumer credit implicitly rely on 
multiple concepts of transparency to manage various risk concerns.

However, depending on their structure, data sources, and other factors, machine learning models 
can raise additional transparency challenges relative to incumbent models because of their size, com-
plexity, and reliance on unintuitive data relationships. While data science techniques have produced a 
range of supplemental tools to increase the transparency of complex models, use of those techniques 
raises additional trustworthiness questions in their own right. Thus, as discussed in Section 3, ques-
tions about the ability of lenders to deliver accurate and useful adverse action notices to consumers 
and to generate explanations that equip a range of other stakeholders to assess and mitigate various 
types of reliability and fairness risks have proven to be the central question regarding the fair and 
responsible use of machine learning underwriting models. 

2.3   Existing Regulatory Frameworks for Managing Reliability, Fairness, and Transparency 
Credit underwriting is a particularly compelling use case for evaluating the trustworthiness of 

machine learning models because pre-existing regulatory and policy frameworks apply to all aspects 
of designing and using underwriting models and serve important policy goals in promoting prudent 
and fair lending regardless of the type of model used to make credit decisions. These frameworks 
are designed to assure the reliability of credit decisions, promote responsible risk-taking, prohibit 

32   Valeriia Cherepanova et al., LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition, published as 
a conference paper at the 2021 International Conference on Learning Representations, arXiv:2101.07922 (2021) (showing how black-box 
adversarial attacks can be deployed to degrade the accuracy of third-party facial recognition models on social media platforms).

33   See Patrick Hall, Proposals for Model Security: Fair and Private Models, Whitehat and Forensic Model Debugging, and Common Sense 
(2019) (highlights how surrogate models can be used to extract unauthorized information from a model through inversion or a member-
ship inference attack). 

34   Smitha Milli et al., Model Reconstruction from Model Explanations, arXiv:1807.05185v1 (2018) (certain model explanation methods, partic-
ularly gradient-based explanations, can reveal enough information about an underlying model so that it can be reconstructed or so that 
one could obtain sensitive training data from it). 



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
18

Section 2: Market Context

discrimination, and provide consumers information about financial decisions. As discussed in greater 
depth below, they rely heavily on various forms of model transparency because neither model devel-
opers nor other stakeholders—including risk and compliance personnel, regulators, and investors—
can manage risks that they cannot identify, understand, or measure. 

Given the impact that poor underwriting can have on consumers, lenders, investors, markets, 
and communities,35 the prudential and consumer protection requirements applicable to lending are 
particularly stringent even compared to other financial services use cases such as fraud, where use 
of machine learning is well established. Yet while these frameworks provide important concepts and 
processes for identifying and managing risks associated with the trustworthiness of machine learn-
ing models, they may also require adjustment given the ways in which machine learning models 
differ from and enhance certain risks relative to incumbent systems. Uncertainty about these ques-
tions is a significant factor affecting individual firms’ decisions about whether and how to adopt 
machine learning in the underwriting context.

The efficacy of data science techniques for managing machine learning underwriting models is 
an important threshold question for lenders which are considering using such models and for their 
regulators. Insights from lending may also produce spillover effects in other sectors by spurring 
improvement in the underlying data science and informing reconsideration of how law and policy 
should evolve to promote responsible use. 

This section briefly sets forth expectations that apply to consumer lending regardless of the 
type of underwriting model being used in the following areas:

 » Prudential expectations regarding model governance throughout the model lifecycle;

 »  Fair lending requirements, particularly with regard to facially neutral practices that have 
an impermissible disparate impact on certain groups; and

 »  Disclosure requirements to provide applicants with individualized adverse action notices 
explaining why they were denied credit or offered less favorable terms.

The consumer protection requirements apply to both banks and nonbanks, although the degree 
of federal oversight by regulators is lower for nonbanks that are not subject to examination. Model 
risk management expectations apply only to banks, although they may inform practices of nonbank 
lenders. Where a supervised lender relies on a third party to design, develop, or operate tools or 
processes that are part of their lending operations, the lender is generally responsible for overseeing 
the vendor’s compliance with applicable regulations.36 

FinRegLab will take up a range of policy, legal, and regulatory questions related to the responsi-
ble, fair, and inclusive use of machine learning underwriting models in subsequent publications. This 
section provides an overview of key expectations and regulatory compliance issues. A more detailed 
discussion is provided in Appendix B.

35   Emerging approaches to regulating the use of AI in other jurisdictions, such as the EU, have recognized the sensitivity of credit scoring 
and underwriting among AI applications and called for them to be treated as “high-risk” for risk management purposes. See European 
Commission, Proposal for a Regulation Laying Down Rules on Artificial Intelligence (Apr. 21, 2021); Penny Crosman, EU Proposes Restrictions 
on AI in Credit Scoring, Authentication, Am. Banker (Apr. 21, 2021). 

36   Board of Governors of the Federal Reserve System, Supervisory & Regulation Letter 13-19 (Dec. 5, 2013); Office of the Comptroller of the 
Currency, Bulletin 2013-29 (Oct. 30, 2013); Office of the Comptroller of the Currency, Bulletin 2020-10 (Mar. 5, 2020); Federal Deposit Insurance 
Corporation, Financial Institution Letter 44-2008 (June 6, 2008); Federal Deposit Insurance Corporation, Financial Institution Letter 19-2019 
(Apr. 2, 2019); Consumer Financial Protection Bureau, Compliance Bulletin and Policy Guidance 2016-02, 81 Fed. Reg. 74410 (Oct. 26, 2016).
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2.3.1 Model Risk Management
Federal prudential regulators have issued extensive guidance outlining their expectations for steps 

that banks should take in developing, monitoring, and using models of all types throughout all aspects 
of their operations. This guidance applies broadly to the range of model use cases that might create 
unexpected losses, compliance problems, or other negative outcomes for the firm and calls for enter-
prise-wide risk management processes including governance, policies, and controls.37 Expectations 
are calibrated to the degree of risk posed by the particular use case, and credit underwriting is often 
considered to be among the highest risk activities depending upon the composition of the particular 
firm’s business. Thus, for financial institutions subject to prudential oversight, these expectations typ-
ically require extensive pre-deployment review of credit models and monitoring during use, especially 
for firms that emphasize retail or consumer banking. For other financial institutions, bank regulatory 
expectations may broadly inform aspects of their model oversight practices, in part because funding 
and securitization counterparties may require some of these processes and practices. 

The prudential model risk management expectations emphasize various aspects of model trans-
parency, some of which can prove to be challenging in the context of machine learning underwriting 
models. At a broad level, the guidance requires documentation of the processes by which a model 
is developed, validated, and monitored during deployment. This includes documenting how the 
learning algorithm produced the final model. More specifically, the guidance creates an expecta-
tion that developers will evaluate whether models are relying on relationships in the data that are 
intuitive and defensible with regard to the outcome that they are attempting to predict, that firms 
will conduct appropriate sensitivity analyses to establish the soundness of the model for use, and 
that lenders will establish appropriate processes for identifying and mitigating risks relevant to the 
model’s use, including compliance with applicable consumer protection laws.38 

One of the ways in which the transition to machine learning poses a particular transparency- 
related issue concerns lenders’ efforts to detect in timely ways conditions that may reduce the 
accuracy of machine learning models. Machine learning models are prone to brittleness—they may 
in effect reflect the training data too closely and not generalize to conditions that differ from that 
data. The emergence of tools to help lenders to improve their ability to recognize and respond to 
conditions in which the performance of machine learning underwriting models might rapidly deteri-
orate points to several additional potential inquiries: what approach has the model developer taken 
to enabling transparency, does that approach confer appropriate levels of transparency in practice, 
and how can the reliability and trustworthiness of information produced to explain the model  
be evaluated.

37   Although each agency has its own issuance, the Federal Reserve Board’s Supervisory & Regulation Letter 11-7 is often used as a shorthand 
to refer to all three agencies’ guidance. See Board of Governors of the Federal Reserve System, Supervisory & Regulation Letter 11-7: Super-
visory Guidance on Model Risk Management (Apr. 4, 2011) (hereinafter “FRB, SR 11-7”); Office of the Comptroller of the Currency, Bulletin 
2011-12: Sound Practices for Model Risk Management: Supervisory Guidance on Model Risk Management (Apr. 4, 2011); Federal Deposit 
Insurance Corporation, Financial Institution Letter 22-2017: Adoption of Supervisory Guidance on Model Risk Management (Jun. 7, 2017).

38   See, e.g., FRB, SR 11-7 (evaluating conceptual soundness involves assessing “documentation and empirical evidence supporting the meth-
ods used and variables selected for the model [to] ensure that judgment exercised in model design and construction is well informed, 
carefully considered, and consistent with published research and with sound industry practice.”); id. attachment at 6 (“Developers should 
be able to demonstrate that such data and information are suitable for the model and that they are consistent with the theory behind 
the approach and with the chosen methodology.”); id. attachment at 11 (“Key assumptions and the choice of variables should be assessed, 
with analysis of their impact on model outputs and particular focus on any potential limitations. The relevance of the data used to build 
the model should be evaluated ….”).
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Compliance with model risk management expectations raises the following questions for users 
of machine learning underwriting models:

 »  What considerations are relevant to identifying responsible, fair, and inclusive use of AI 
and machine learning systems? 

 »  What kinds of transparency are relevant to establishing the conceptual soundness of AI 
and machine learning models: transparency as to the model’s construction and general 
operations or transparency as to the bases for individual predictions made by the model?

 »  How should firms evaluate and measure the transparency of AI and machine learning 
models in the context of establishing their conceptual soundness and fitness-for-use?

 »  Where ex post explainability methods are used, how should firms evaluate the  
trustworthiness and utility of information produced by these supplemental analyses?

2.3.2 Fair Lending 
Lenders are subject to broad anti-discrimination requirements regardless of the type of model a 

lender uses to predict an applicant’s likelihood of default.39

These requirements give rise to two fair lending doctrines: disparate treatment and disparate 
impact.40 Disparate treatment focuses on whether lenders have treated applicants differently based 
on protected characteristics. It generally prohibits consideration of race, gender, or other protected 
characteristics in underwriting and scoring models. Disparate impact addresses lenders’ use of facially 
neutral practices that have a disproportionately negative effect on protected classes, unless those 
practices meet a legitimate business need that cannot reasonably be achieved through alternative 
means with a smaller adverse impact.41 The legal analysis for disparate impact has three parts:42

 »  Adverse Impact: A plaintiff (such as a consumer or a regulatory agency) must make an ini-
tial showing that a particular act or practice causes a disproportionate adverse effect on a 
prohibited basis. This is typically analyzed by looking at whether use of particular variables 
or other lending practices cause approval rates or pricing patterns to differ by race, gender, 
or other protected characteristics.

 »  Business Justification: In response, the creditor must then show that the practice furthers 
a legitimate business need, such as whether the variable helps to predict the risk of default. 

 »  Less Discriminatory Alternative: In response, to prevail on a claim, the plaintiff must 
demonstrate that the legitimate business need cited by the creditor can reasonably be 
achieved by using an alternative practice that would have less adverse impact. 

39   The Equal Credit Opportunity Act (ECOA) prohibits discrimination in “any aspect of a credit transaction” for both consumer and commercial 
credit on the basis of race, color, national origin, religion, sex, marital status, age, or certain other protected characteristics, and the Fair 
Housing Act (FHA) prohibits discrimination on many of the same bases in connection with residential mortgage lending. See 15 U.S.C. § 1691(a) 
(also prohibiting discrimination based on the receipt of public assistance and the good faith exercise of certain rights under federal consumer 
financial law); 42 U.S.C. § 3605 (prohibiting discrimination on the basis of race, color, national origin, religion, sex, familial status or disability).

40   The Supreme Court has confirmed that both doctrines are available under the Fair Housing Act, but has not yet ruled on whether dis-
parate impact analysis applies under ECOA. Texas Dep’t of Housing & Community Affairs v. Inclusive Communities Project, Inc., 576 U.S. 
519 (2015). Federal regulations, agency guidance, and lower court decisions have recognized the doctrine under ECOA for decades, in part 
based on legislative history. See, e.g., 12 C.F.R. § 1002.6(a); id. Supp. I, cmt. 1002.6(a)-2. 

41   For a general overview of the two doctrines and the ways that they overlap, see Carol A. Evans, Keeping Fintech Fair: Thinking About Fair 
Lending and UDAP Risks, Consumer Compliance Outlook 4-9 (Second Issue 2017).

42   In litigation, the burden shifts back and forth between the parties to make particular showings at each stage. However in other contexts, 
such as where a lender’s compliance team is applying this analysis to monitor its fair lending risk, one party will perform each of the steps. 
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Both doctrines rely on statistical tests and analyses of data inputs that can be more challenging 
to implement in the context of complex machine learning models. For example, the identification 
and management of variables that may proxy for protected class status under both disparate treat-
ment and disparate impact theories of discrimination requires a high degree of transparency into 
how the models are built and how they make predictions. Machine learning models may also effec-
tively reverse-engineer protected class status from correlations in data, even though consideration 
of such status is prohibited. Thus, particularly where machine learning models rely on data from 
more varied sources or on more complex and unintuitive features, lenders and regulators may need 
new tools and face new limitations in efforts to diagnose bias.43 Certain uses of protected class fea-
tures could actually increase the accuracy and fairness of machine learning underwriting models,44 
but there is substantial uncertainty as to whether various options are permitted under current law. 

In the context of fair lending compliance, stakeholders are increasingly focused on these questions:

 »  Is managing input variables to identify and control fair lending risks effective in the  
context of algorithmic lending?

 »  How should firms choose among alternative model specifications that affect protected 
classes differently? 

 »  Are firms permitted to use methodologies at any point in developing an underwriting 
model that involve direct consideration of protected characteristics in order to improve 
model fairness?

2.3.3 Adverse Action Notices 
The Equal Credit Opportunity Act and the Fair Credit Reporting Act require lenders to disclose 

to consumers their principal reasons for denying credit applications or taking other adverse actions, 
including offering less favorable terms based on information in applicants’ credit reports.45 The 
requirements were adopted as part of broader efforts to prohibit discrimination and promote the 
correction of errors in credit reports, and give lenders substantial latitude as to how they determine 
which factors to highlight and whether to explain how the factors affected the lenders’ decision. 
Thus, these adverse action notices must describe the facts that were “relevant to a decision, but 
[need not provide] a description of the decision-making rules themselves.”46

Even though the regulations provide substantial flexibility to firms, lenders report that uncer-
tainty about complying with adverse action requirements does shape and sometimes chill adoption 
of nontraditional data sources and machine learning methodology.47 Explaining particular variables 

43   Historically, regulators have looked at whether particular variables have an “understandable relationship to an individual applicant’s 
creditworthiness” as well as a statistical relationship to loan performance in determining whether they meet a legitimate business need.   
Office of the Comptroller of the Currency, Bulletin 1997-24, app. at 11 (May 20, 1997). See also Section 5 for further discussion.

44   See Jon Kleinberg et al., Algorithmic Fairness, 108 AEA Papers and Proceedings 22-27 (2018). 
45   The laws define “adverse action” to include denials of credit applications on substantially the same terms and in substantially the 

same amount as requested, unless the lender makes a counter-offer. Adverse actions also include unfavorable decisions on existing 
credit arrangements, such as negative changes in terms, denials of line increases, and reductions or cancellations of credit lines. 15 U.S.C. 
§§ 1681a(k)(1), 1691(d)(6). In 2011, a FCRA amendment took effect to require similar risk-based pricing notices where credit terms are “mate-
rially less favorable” than the terms granted to a “substantial proportion” of other consumers. 15 U.S.C. § 1681m(h); 12 C.F.R. §§ 222.70-75. 
ECOA’s disclosure requirements apply to both consumer and commercial credit, although some details are different for business appli-
cants. Federal agencies have excluded business credit from FCRA’s disclosure requirements. 15 U.S.C. § 1681a(c); 12 C.F.R. §§ 222.70(a)(2), 
1002.9(a). 

46   Andrew D. Selbst & Solon Barocas, The Intuitive Appeal of Explainable Machines, 87 Fordham L. Rev. 1085, 1100 (2018).
47   Leslie Parrish, Alternative Data and Advanced Analytics: Table Stakes for Unsecured Personal Loans, Aite Group 16, figure 12 (2019) (report-

ing that surveyed industry executives view explaining model results, and specifically adverse actions, as the most significant challenge for 
using AI and machine learning in decisioning applications for credit); Eric Knight, Note, AI and Machine Learning-Based Credit Underwriting 
and Adverse Action Under the ECOA, 3 Bus. & Fin. L. Rev. 236-258 (2020). 
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that are influential in machine learning models can be difficult where the models develop and rely 
on relationships that are inherently complex, non-intuitive, difficult to assess, large in number, or 
dependent on other input variables or relationships. However, other stakeholders argue that the 
growth of open-source and other tools for more transparent and interpretable machine learning 
models have given lenders new options to satisfy adverse action reporting requirements.48 

Users of machine learning underwriting models consider the following questions critical to com-
plying with adverse action reporting requirements: 

 »  Can models that rely on complex interactions between variables or models generate  
accurate adverse action notices? 

 »  How can firms evaluate whether particular explanations of a model’s prediction provide 
adverse action notices that meet current regulatory requirements?

 »  Can or should law and regulation require provision of information on adverse action 
notices that give recipients actionable information about how to improve the prospects  
of a better outcome on their next application for credit?

2.4 State of Adoption of Machine Learning Underwriting Models
Given the magnitude of potential benefits, risks, and compliance questions regarding the adop-

tion of machine learning underwriting models, it is perhaps not surprising that use has lagged behind 
some other sectors and applications. Each firm faces a complex set of decisions regarding whether 
and how to reconfigure their lending platforms to deploy such models depending on their estimates 
of the potential magnitude of benefits, their ability to satisfy themselves and key stakeholders with 
regard to the trustworthiness of the models and their compliance with existing law, and the potential 
implementation costs.49 For firms that find the investments in internal infrastructure and technical 
expertise prohibitive, reliance on vendor-provided underwriting models may be appealing, although 
this approach complicates the task of establishing appropriate oversight of the vendor’s model  
and operations. 

Though surveys of industry executives do not always distinguish between credit underwriting 
and other use cases,50 they do suggest that interest and adoption are increasing generally across 
financial services and that events of the past year have further accelerated the trend. For example, 
a 2019 survey of risk management executives in financial services and insurance found that the 
respondents viewed AI and machine learning as a “major differentiator” in their businesses, though 
about half of the participating institutions lacked AI and machine learning capabilities in some or 
all of their platforms.51 In a 2020 lender survey, 88% of respondents reported that they plan on 

48   BLDS, LLC et al. at 9, 15-18.
49   See Emma Strubell et al., Energy and Policy Considerations for Modern Deep Learning Research, 34 Proceedings of the AAAI Conference 

on Artificial Intelligence (2020) (calculating the cloud computing cost of a research and development cycle for a typical natural language 
processing pipeline as between $100,000 and $350,000 with almost $10,000 in additional electric costs); Lasse F. Wolff Anthony et al., Car-
bontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models, ICML Workshop on “Challenges in Deploying 
and Monitoring Machine Learning Systems,” arXiv:2007.03051v1 (2020) (discussing the potential for ML models to generate vast amounts 
of carbon emissions, proposing a tool for tracking said emissions, and suggesting that developers can reduce a model’s carbon footprint 
by training the model in low carbon intensity regions, during low carbon intensity hours, using efficient algorithms, and using efficient 
hardware and settings).

50   A recent survey of consumer lending executives reported that 45% of respondents reported that their institution used AI for originations. 
Notably, the category labeled originations used in this survey included machine learning underwriting models as well as streamlining data 
fields and real-time decisioning based on probability inputs. Leslie Parrish, Impact Report, Consumer Lenders’ Plans for Navigating the 
Next Normal, Aite Group (2021).

51   Leslie Parrish, Risky Business: The State of Play for Risk Executives in the Analytics Ecosystem, Aite Group 14, figure 9 (2019).
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increasing investment in AI in coming years specifically for use in credit risk.52 General surveys in 
2020 and 2021 indicate that recent events have accelerated adoption of AI across financial services 
and in other industries. For instance, in the face of rapidly changing economic conditions, there is a 
clear increase in interest in using machine learning for portfolio analysis and management as lenders 
consider how to adjust their credit criteria in changing and uncertain conditions. Yet the surveys also 
suggest that this growth is sparking increased unease: the number of financial services executives 
who report AI is being adopted “too fast for comfort” jumped to 37% in 2021, an increase of 20 per-
centage points from 2020.53 

FinRegLab conducted interviews with a variety of bank and nonbank lenders, score and analytics 
providers, technology vendors providing model diagnostic tools and services, consumer advocates, 

52   Survey respondents included 175 LendIt subscribers out of a pool of more than 1,000. Brighterion, Survey Report: Using AI to Manage 
Credit Risk: Lenders Report on Current AI Use and Future Investments 9 (2020). 

53   KPMG, Thriving in an AI World 8, chart 3 (2021).

BOX 2.4   UNDERWRITING-RELATED USES OF MACHINE LEARNING IN LENDING

Machine learning and AI models can be used in sev-
eral aspects of credit decisions as discussed below and 
in other aspects of lenders' operations that can also 
have important implications for applicants’ access to 
and use of credit, as discussed further in Box 4.1.

The phrase underwriting model may in practice refer 
to a suite or ensemble of models that operate in con-
cert to determine an applicant’s probability of default, 
assign a line of credit, and set pricing. Depending on 
the firm and business line, line assignment and pricing 
analyses may be made by different models than those 
that support approve/deny decisions. Pricing models 
may look at some but not all of the same information 
as approval models.a

Underwriting Model Development and Feature 
Engineering: An underwriting model using traditional 
modelling techniques may nevertheless apply rules or 
use interactions identified through analysis of large 
datasets using machine learning. This can give lenders 
the benefit of machine learning’s insight and ability to 
analyze large volumes of diverse data without incur-
ring the full costs of changing their lending platform 
or incurring certain financial, regulatory, or operational 
risks associated with using a machine learning model 
directly to make underwriting decisions. Although 
using machine learning to discover features—variables 
or relationships considered by the model—is common 
among technologically-enabled lenders across sectors 
and asset classes, individual firms’ approaches may 
vary significantly in terms of the types of machine 
learning and data being used, as well as whether the 
models to develop these insights are treated as chal-
lenger models for model risk management purposes or 
used only in the earliest stages of model development 
to identify and validate particular features incorpo-
rated in traditional models.

Underwriting: Lenders use underwriting models to 
evaluate the likelihood that individual applicants for 
credit will repay the loan or not. In general, underwriting 
models are used to evaluate applicants’ creditworthi-
ness and assign them to risk tiers based on the relative 
probability of default that the model estimates. Lenders  
then decide which tiers they are willing to approve 
based on their willingness to take on credit risk in light 
of market conditions and other factors. For applicants 
who will be offered credit, many lenders assign interest  
rates based on the risk tier to which the applicant is 
assigned, the ability to pay as measured by capacity  
or income and other factors such as the likelihood to 
revolve balances for lines of credit. As discussed in Box 
2.1, under risk-based pricing systems, the higher the 
probability of default associated with an approved 
applicant, the higher the cost of the loan, including the 
interest rate, will be. Finally, lenders may determine the 
loan amount or credit limit based on the underwriting 
model’s assessment of an applicant’s creditworthiness 
or based on a separate model tailored to that specific 
purpose.

Monitoring and Adjustment of Credit Lines: For 
open-end credit products like credit cards, lenders 
typically monitor lines on outstanding loans to assess 
whether they should be increased or decreased and to 
determine when and by what increments the amount 
of authorized credit should be adjusted. Here, some 
forms of unsupervised machine learning may help lend-
ers assess borrower behavior, either on their own or in 
combination with supervised learning techniques. In the 
context of upward adjustments, concerns about model 
transparency may be somewhat reduced because such 
adjustments are often initiated voluntarily by lenders 
and are not subject to adverse action reporting.

a    See generally Carroll & Rehmani.
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data scientists, and other financial services stakeholders to assess how machine learning models are 
being used and what choices firms relying on those models have made. This section and Section 3.5 
summarize findings from those interviews.

2.4.1 Usage of Machine Learning Underwriting Models
Both banks and nonbanks are using machine learning models to analyze large datasets and 

identify relevant variables or relationships for use in logistic regression underwriting models. While 
such feature engineering is common across a broad range of credit products, the use of machine 
learning models to make underwriting decisions is at an early stage.54 Among those using machine 
learning underwriting models, firms are using a variety of methodologies to develop, explain, and 
manage these models. How firms design and use these models is likely to evolve as firms and other 
stakeholders gain experience in operating and managing these models. Decisions of individual firms 
about whether to use machine learning underwriting models, what forms of machine learning to 
use, and how to enable appropriate transparency vary based on firm culture and strategy as well as 
competitive dynamics in specific sectors and asset classes.

2.4.1.1 Usage by Sector
Within the banking sector, the resources that the largest firms command—especially with 

respect to personnel, customer data, and computing infrastructure—make machine learning a more 
realistic choice than for even large regional or global banks with smaller domestic retail banking 
businesses.55 Similarly, the cost-benefit analysis related to transitioning to machine learning under-
writing platforms may only make sense right now for lenders who operate at a sufficiently large 
scale that marginal performance gains translate to substantial enough returns to warrant the neces-
sary investments. Bank concerns about technology companies challenging their traditional franchise 
may also be driving the largest firms to develop and implement machine learning models across 
their operations.56 Most of these lenders are developing machine learning underwriting models with 
minimal external support.

Mid-size and smaller banks are generally still in the process of evaluating whether machine 
learning underwriting models can sufficiently improve the performance of specific aspects of their 
businesses to warrant implementation costs and process changes.57 Over time, the emergence of 
a varied community of vendors that can help develop, implement, and manage machine learning 
models may make adoption of machine learning more realistic for smaller firms, though reliance on 
third-party vendors can also increase challenges related to model governance.58

Nonbank lenders’ use of machine learning underwriting is generally more widely established 
across product markets than in the banking sector, especially in segments populated by newer 

54   For purposes of this report, the term machine learning underwriting model refers to a model in use to estimate the risk of default related 
to applications for credit and excludes activities like using machine learning for feature engineering or as challenger models. See Box 4.1.2.

55   For example, across a 2020 survey of 175 large and small institutions that subscribe to Lendit, approximately 20% of respondents had 
no in-house staff for credit modelling and relied on third parties to conduct such activities. Even large institutions with credit modelling 
teams did not always devote significant resources to the activity, as just 16% of large institution respondents had four or more full time 
modelers. Cornerstone Advisors at 4, figure 4.

56   In his 2020 annual letter to shareholders, JPMorgan Chase & Co. CEO Jamie Dimon writes that banks such as JPMorgan “are facing 
extensive competition from Silicon Valley, both in the form of fintechs and Big Tech companies (Amazon, Apple, Facebook, Google and 
now Walmart), that is here to stay. As the importance of cloud, AI and digital platforms grows, this competition will become even more 
formidable.” JPMorgan Chase & Co., Chairman & CEO Letter to Shareholders, sect. III (Apr. 7, 2021).

57   Ostmann & Dorobantu. 
58   As discussed further in Section 3, a number of vendors are providing assistance with model development and monitoring.
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firms. Certain nonbank lenders emphasize the importance of machine learning models’ superior 
capacity to analyze large volumes of data and different kinds of data. Notable factors encouraging 
nonbank adoption of machine underwriting models and use of more complex machine learning 
models include: reliance on digital business models; use of newer lending platforms; absence of 
bank-like model risk management requirements; less consistent examination and oversight than in 
the banking sector; and funding incentives from private equity investors attracted to technology 
transformation. But nonbank usage is not wholly unconstrained. For example, equity and capital 
markets investors may impose certain kinds of limitations in practice to protect potential returns. 

A range of other nonbank companies are offering products, services, and data to support lend-
ers’ potential adoption of machine learning models (as discussed further in Section 3). For instance, 
credit bureaus and companies that develop third-party credit scores are also using machine learn-
ing in a variety of ways, ranging from supporting development of their own models to developing 
custom scoring models for clients and providing tools to support their use.59 Consulting firms are 
also offering services to lenders at various stages of planning, designing, implementing, and using 
machine learning underwriting models, including conducting algorithmic audits prior to deployment 
and periodically during use. 

2.4.1.2 Usage by Market 
Credit cards and unsecured personal loans (including point-of-sale loans) are the consumer 

finance asset classes in which the use of machine learning models to make credit decisions is most 
advanced. This reflects the historical position of credit cards as being at the analytical forefront of 
consumer finance and the dominance of digital lending in unsecured personal loans. Between 2015 
and 2019, fintech lenders doubled their share in the latter market even as its overall size expanded, 
and now account for 49% of originated loans.60

Auto lending61 and small business lending62 are also areas where machine learning underwriting 
models are in use. In small business lending in particular, less standardized data and development 
of significant market share by nonbank lenders may promote the use of machine learning under- 
writing models.63

2.4.1.3 Usage by Model Type
The types of machine learning models that are most relevant to credit underwriting predictions 

and the options for managing those models to provide transparency for business and regulatory 
purposes are discussed later in Section 4 and Section 3, respectively. Among early adopters of 
machine learning underwriting models, firms are using a variety of model types including tree-

59   Third-party credit scores such as those developed by FICO and VantageScore for use by a broad range of lenders are estimated to be used 
in more than 90% of mortgages, credit cards, and auto loans, though individual lenders may use them in different ways. For instance, 
some lenders set a minimum score below which they will not lend, while others use the scores or the underlying attributes as inputs to 
proprietary underwriting models. The scores are also frequently used as benchmarks for portfolio monitoring and securitization. Some 
scoring model developers and consumer reporting agencies also offer services to help lenders develop custom proprietary models. Fin-
RegLab, Cash-Flow Market Context & Policy Analysis at 9 & n.13. 

60   Experian, Fintech vs. Traditional FIs: Trends in Unsecured Personal Installment Loans 3 (2019); see also DBRS, U.S. Unsecured Personal Loans— 
Marketplace Lenders Continue to Expand Market Share 3-4 (2019) (analysis of the growth of fintechs in the unsecured personal lending 
space from 2013 to 2018, measuring market share as the proportion of outstanding loan balances).

61   Auto lenders such as Prestige Financial Services and Upstart have adopted AI underwriting models. See, e.g., Becky Yerak, AI Helps Auto-
Loan Company Handle Industry’s Trickiest Turn, Wall St. J. (Jan. 3, 2019); Upstart, Auto Loans (undated). 

62   Trevor Dryer, How Machine Learning Is Quietly Transforming Small Business Lending, Forbes (Nov. 1, 2018).
63   Wei Wang et al., Using Small Business Banking Data for Explainable Credit Risk Scoring, 34 Proceedings of the AAAI Conference on Artificial 

Intelligence (2020). 
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based models, neural networks, and ensembles that combine several different models.64 Further, 
some firms are using model architectures that are more transparent by design. Others are using 
more complex or black box models that rely on post hoc explainability techniques—secondary 
models, analyses, or methods—to meet necessary levels of transparency. Banks may be partic-
ularly hesitant to engage in more complex modelling as increasing complexity can make it more 
challenging to explain to customers, examiners, and other stakeholders how and why certain  
decisions are made in a clear, concise way.

Some lenders believe that tree-based models offer a workable balance of improved performance, 
operational efficiency, and transparency. In particular, stakeholders report that XGBoost underwriting 
models using monotonicity constraints and coarse classing65 can produce performance gains of up 
to 15-20% over traditional regression when evaluating applicants based on traditional underwriting 
data, while meeting transparency needs.66

However, other lenders and analytics providers suggest that constrained neural networks are 
a preferred approach, because they provide improved predictive power and do not require relying 
solely on supplemental models or analyses to satisfy transparency needs.67 For example, as dis-
cussed in greater detail in Section 4, stakeholders report that single-layer neural networks or those 
generated using a piecewise linear activation function and consisting of a series of locally-linear 
models can meet relevant transparency requirements.68

Further, some lenders have found ways to develop and use machine learning models that involve 
many more features and greater complexity than traditional underwriting models have typically 
included. For instance, one auto lender reports using a model with more than 2,000 features to assess 
the creditworthiness of loan applicants—a significant expansion compared to current automated 
underwriting systems which tend to use dozens rather than hundreds or thousands of features.69 
Similarly, some nonbank firms originating consumer loans use AI underwriting models with more 
than 1,000 features.70 

***

The remainder of this report examines in depth the choices that lenders using machine learning 
underwriting models make when considering how to develop models that use strong, defensible, 
and fair relationships to make credit decisions. This report’s analysis of model development choices 
begins in Section 3 with a consideration of why model transparency is so important and the options 
for developing sufficiently transparent underwriting models. Section 4 describes forms of machine 
learning relevant to credit underwriting as well as foundational data selection and preparation stages 

64   See Office of the Comptroller of the Currency, Comptroller’s Handbook, Credit Card Lending 17 (Version 2.0, Apr. 2021) (“Some banks are 
applying artificial intelligence (AI) and machine learning (ML) methods [e.g., gradient boosting or neural network] to credit scoring”).

65   For a description of XGBoost, see Figure 4.1.2.1.1 of this report. For an explanation of monotonicity constraints, see Section 3.4.1.2 of this 
report. For an explanation of coarse classing, see Section 4.2.2.2 of this report.

66   See also Petropoulos et al. (finding that a machine learning model using XGBoost outperformed a neural network—and that both models 
outperform traditional logistic regression models—in assessing the credit risk of corporate loans in Greece using a combination of loan-
level data and macroeconomic indicators).

67   Agus Sudjianto et al., Unwrapping the Black Box of Deep ReLU Networks: Interpretability, Diagnostics, and Simplification, arXiv:2011.04041v1 
(2020); Scott Zoldi, How to Make “Black Box” Neural Networks Explainable, FICO Blog (Jan. 14, 2019). 

68   Sudjianto et al.
69   Prior to deploying a machine learning platform, this lender had used only 23 features in its underwriting model. See Rhagav Bharadwaj, 

Top 5 AI Startups in Banking by Funding ‒ A Brief Overview, Emerj (Nov. 19, 2019); Yerak.
70   Upstart Holdings, Inc., Form 10-K 11 (2021) (“Variables in our AI models have increased from 23 in 2014 to more than 1,000 as of December 

31, 2020. These include factors related to credit experience, employment, educational history, bank account transactions, cost of living 
and loan application interactions.”); Oportun, Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use 
of Artificial Intelligence, Including Machine Learning at 3 (“Oportun’s lending platform leverages machine learning and processes large 
amounts of alternative data along with traditional credit bureau data to assess creditworthiness across more than 1,000 end nodes.”).
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of developing an underwriting model. Section 5 examines approaches to identifying and mitigating 
sources of bias in model development. That section sets out the ways that data and models can 
each be the source of bias, describes emerging approaches to measuring bias, and outlines methods 
for addressing models in machine learning models. Section 6 looks ahead to FinRegLab’s empirical 
research on the capabilities and performance of model diagnostic tools available to lenders.
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3. MODEL TRANSPARENCY
The ability to realize the potential of machine learning to significantly enhance the quality, 

fairness, and inclusiveness of credit decisions depends on resolving uncertainty about when to 
trust a specific model and when not to. Among the components of model trustworthiness, model 
transparency serves as a critical threshold question.71 Machine learning models do not inherently 
need to be transparent to make predictions, and existing law and regulation do not generally 
require users of Al or machine learning model users to meet defined thresholds for model trans-
parency. But without appropriate transparency, internal and external model stakeholders—model 
developers, risk managers, regulators, and investors—cannot be confident that a model can be 
or is being used responsibly and fairly. Transparency is also important to applicants who receive 
adverse action notices. 

The importance of transparency in answering concerns about trustworthiness is heightened 
in highly regulated sectors like financial services and sensitive use cases like credit underwrit-
ing because several existing oversight frameworks rely on or require transparency in one form or 
another. In the context of credit decisions, this creates a need to understand how a model used in 
credit underwriting was developed, how it makes decisions, and what factors explain particular 
outcomes, such as denying certain credit applicants or charging those applicants more for their 
loan. Specifically, various stakeholders need to be able to assess the reliability and robustness of 
the model’s performance, to provide an explanation for why a particular credit decision was made 
and a particular price was offered, and to understand if the model’s predictions are fair from the 
perspective of individual applicants and the treatment of groups given special protection due to 
historical discrimination. 

Concerns about model transparency shape lenders’ decisions at every stage of the process of 
developing, implementing, and managing machine learning underwriting models. Model developers 
may in effect work backwards from the transparency requirements of their use case—by designing 
and planning their modelling approach based on the level and type of transparency required. In 
practice, the developer of an underwriting model needs to be able to establish that each relationship 
in the model has an intuitive, defensible relationship to an applicant’s likelihood of default. Further, 
given adverse action disclosure requirements, firms need the capacity to pinpoint the primary bases 
of individual credit decisions. Model developers can use a variety of tools and techniques to build 
a model with the necessary transparency in whatever type of machine learning they choose for 
their underwriting model.72 They might develop an inherently interpretable model—one that can be 

71   Ostmann & Dorobantu at 45-63.
72   Forms of machine learning relevant to underwriting are discussed in Section 4.1.
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explained and understood on its face without additional analysis. Alternatively, they might build an 
explainable model—one that uses more complex or black box models alongside supplemental mod-
els, analyses, and techniques designed to improve the transparency of such models.73 

This section considers both the importance and challenge of enabling appropriate transparency 
for machine learning underwriting models; presents the debate about whether to achieve such trans-
parency by constraining model architecture and/or using supplemental explainability techniques; 
analyzes the tools and techniques available to build both kinds of models; and surveys model diag-
nostic tools that have emerged to support lenders using machine learning underwriting models. As 
discussed further in Section 1, FinRegLab is partnering with researchers from the Stanford Graduate 
School of Business to conduct empirical research relating to many of these issues.

3.1 The Importance of Model Transparency
While financial services laws and regulations do not define specific thresholds for model trans-

parency, these frameworks and in some cases firm risk management policies focus attention on 
two different types of transparency: transparency about how a machine learning model works and 
transparency about the process by which it is designed, implemented, and managed.74 Given this, 
resolving questions about model transparency are a key hurdle for widespread adoption of machine 
learning in high stakes uses like credit underwriting.75 

In this context, model transparency serves several critical purposes in establishing the trustwor-
thiness of a machine learning underwriting model:

 »  Promoting Sound Model Development: Sufficient transparency lets model developers 
generate information about and evaluate specific tradeoffs involved with various design 
or implementation decisions they must make in the course of designing and developing 
a model. This scrutiny of the logic used to make a prediction enables activities like model 
debugging and bias mitigation that can directly improve the performance and fairness of 
the model. 

 »  Facilitating Pre-Deployment Model Reviews: Given the risk of financial losses and rep-
utational damage connected with poor underwriting, lenders typically engage in significant 
pre-deployment reviews of underwriting models; indeed, bank lenders must do so as a mat-
ter of regulatory compliance. Being able to explain and document the conceptual soundness 
of a proposed model and the process by which it was designed are critical to determining 
whether a model can be used responsibly and fairly. So is the ability to explain its operations 
and performance before deployment.

 »  Enabling Model Monitoring: Once an underwriting model is in use, model transparency 
allows stakeholders to track its performance across key performance and risk indicators, 
to assess whether changes in its performance or operations are exposing the firm to 
new or different financial, regulatory, or reputational risks, and to make adjustments 

73   The terms interpretable AI and explainable AI, much like the underlying terms interpretability and explainability, have no fixed meaning, 
and are used differently among various stakeholder communities. The terms set forth above reflect usage throughout this report.

74   Ostmann & Dorobantu at Ch. 5. Where this section discusses the transparency or complexity of machine learning underwriting models, it 
primarily focuses on concerns related to the underwriting model produced by various machine learning methods rather than the learning 
algorithm that produced the final model. More research is needed to understand how varying approaches to managing both forms of 
transparency affect the explainability and fairness of machine learning underwriting models.

75   Leslie Parrish, Alternative Data and Advanced Analytics at 16, figure 12 (reporting that surveyed industry executives view explaining 
model results, and specifically adverse actions, as the most significant challenge for using AI and machine learning in decisioning appli-
cations for credit).
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as appropriate. It also permits internal review of the quality and consistency of deci-
sions based on model predictions and enables governance processes to determine when 
particular decisions need to be challenged or when a model needs to be reviewed or 
updated. Periodic fair lending testing is a common example.

 »  Providing Recourse and Empowering Consumers: Model transparency facilitates review, 
challenge, and error correction for those adversely affected by a model’s predictions. In the 
context of underwriting, this rationale is most often considered in the context of adverse 
action notices. Here, model transparency enables an applicant who was not offered credit 
to be provided information on an adverse action notice that enables the applicant to review 
the basis for the decision. Where the required disclosure reports a prior bankruptcy when no 
such action had occurred, for example, the applicant can seek reconsideration of the deci-
sion and pursue corrections in their credit history. Model transparency also has the potential 
to provide information that can help empower consumers—for example, in improving con-
sumers’ understanding of their credit scores or ways to improve their financial position and 
creditworthiness in the future.

 »  Establishing Regulatory Compliance: Model transparency is also critical for firms to 
document and conduct internal assessments of their compliance with the range of regula-
tory requirements applicable to providing credit. Bank and nonbank lenders will generally 
need sufficient insight into the operations and performance of their underwriting models 
to assess and document their compliance with fair lending and adverse action reporting 
requirements, and banks will need to do the same as to prudential model risk management 
expectations.

3.2 The Challenge of Model Transparency
While machine learning models can be significantly more complex than traditional underwriting 

algorithms, it is too facile to assume that underwriting models using logistic regression are more 
explainable than any machine learning model. An underwriting model assessing dozens of variables 
using logistic regression may be prone to many of the same explainability challenges of a neural 
network that is more transparent by design. In this regard, the sustained attention on how to enable 
and evaluate the explainability of machine learning models may raise standards applied to all kinds 
of models. 

Nevertheless, enabling necessary levels of transparency in machine learning underwriting models 
poses particular challenges with both human and technological components. This section considers 
broadly applicable challenges to explaining credit underwriting models before describing factors 
affecting the complexity of machine learning models. 

3.2.1 Users of Model Explanations
A variety of stakeholders have a general need to understand how a credit underwriting model 

works and, in some cases, a particular need to understand individual predictions made by a model:

 »  A firm’s model developers and managers, who are responsible for designing, implementing, 
and operating models that meet business objectives and expectations set forth in law, reg-
ulation, and firm policies

 »  A firm’s business executives, who need to establish the model’s fitness-for-use in order to 
commit capital based on the model’s predictions 
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 »  A firm’s legal and risk management teams, which review a model’s compliance with laws, 
regulations, and firm policies relevant to a model’s specific use case

 »  A firm’s regulators, who review decisions about model development and use from the per-
spective of compliance with individual consumer financial protection requirements and 
monitoring prudential risks where applicable

 »  A firm’s customers and potential customers, who need to make decisions about whether 
to provide access to their data, are legally entitled to understand the basis for the firm’s 
decisions on applications, and are best positioned to detect the use of errors reported on 
adverse action disclosures 

 »  A firm’s investors, who supply capital based on confidence in management’s business judg-
ment and performance of individual loans or asset-backed securities

The needs of each of these stakeholders to understand how an underwriting model works do 
not fundamentally change when machine learning is used, but firms are still working to develop 
and test forms of machine learning that consistently meet these needs. The diversity of relevant 
stakeholders is important to developing context-appropriate and usable explanations of a mod-
el’s behavior, as explainability is a distinct psychological process that depends on the user of the 
explanation.76 Users of explanations of model behavior rely on this information to serve different 
purposes and answer different questions. Further, each one will also bring different expertise and 
experience—about predictive models, credit risk assessment, and credit decisions—to the task of 
interpreting the meaning and implications of a model’s explanation. 

In this context, generating an accurate, detailed, and often technical explanation of how 
a model’s outcome came to be may not always be sufficient to facilitate understanding and 
communicate meaning.77 Articulating a model’s operations—how it makes predictions or what 
the basis of a particular prediction is—can be challenging in its own right when a model 
lacks transparency. Indeed, the technological task of explaining machine learning models has 
spawned a broad, sustained inquiry in academia and industry, and that inquiry has produced 
a range of options for generating information about model behavior. But the information pro-
duced to explain models may not be sufficient if it doesn’t also enable actions contemplated 
by public policy, such as the identification and mitigation of fair lending risks in the context of  
consumer lending. To achieve this, the information provided to explain models must be usable to 
support and inform strategic, governance, and risk management decisions involving the stake-
holders groups noted above—that is, diverse users of model explanations need to be able to 
understand and act on that information. Given the early state of adoption and the absence of 
industry or regulatory standards, approaches to meeting these needs vary across firms and even 
within them. 

3.2.2 Understanding Complex Models
The importance of understanding machine learning models may be no greater than incumbent 

models, but it may require different tools and occur at different parts of the process. When design-
ing a traditional underwriting model, a model developer assesses relevant data, conducts analyses, 
and opts to include particular variables or relationships into a model precisely because he or she has 

76   David A. Broniatowski, Psychological Foundations of Explainability and Interpretability in Artificial Intelligence, National Institute of Stan-
dards and Technology 2 (2021).

77   Id. at 5.
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demonstrated the predictiveness of those attributes.78 Even where this process is aided by auto-
mation, the developer will make clear, ex ante decisions about what relationships and analyses are 
incorporated in the model. 

However, in underwriting models developed by machine learning algorithms, the task of under-
standing what relationships the model is identifying and why requires additional work to identify 
and assess individual features, relationships, and analyses that were identified by the learning algo-
rithm rather than a human. The algorithm deconstructs and extracts information from training data 
to generate a model. A model developer does not program certain relationships to be in the model, 
but rather oversees, monitors, and shapes how the algorithm analyzes and uses training data to 
construct a model. This process is not without opportunities for oversight—each decision that a 
model developer makes is reviewable by modelling peers, risk and compliance personnel, and regu-
lators. But those opportunities may come at different points in the model lifecycle and require more 
work and different tools to answer questions about the model’s reliability and fairness for each of 
these stakeholder groups. 

3.2.3 Factors Affecting Model Complexity
In general, the more complex a model is, the more challenging it will be to explain and under-

stand.79 Several characteristics of machine learning models further increase the challenge of enabling 
necessary model transparency and have made this area a critical focal point for academic and 
industry data science research. Those include:

3.2.3.1 Nature of Data
Because machine learning models are shaped by training data to a greater degree than tradi-

tional models, the size, nature, and quality of data can have a direct effect on model complexity. The 
greater the number of input variables used (or dimensionality of the data), the more complex the 
model is likely to be due to increased complexity of interactions between features in the model.80 
Further, increases in the size, composition, or number of datasets used as inputs to underwriting 
decisions can make data quality issues difficult to identify and increase their importance, both of 
which can affect complexity.81

Decisions about what information lenders include in credit risk assessment may also affect the 
complexity of the resulting underwriting model. For example, where lenders choose to use only 
traditional credit information, that decision itself may impose some limit on model complexity. 
Starting with a relatively small number of input variables and limiting usable features to those with 
strong, defensible relationships to creditworthiness may naturally limit the complexity of the result-
ing underwriting models, perhaps to the point that they produce marginal increases in complexity 
and performance. For lenders with sufficient scale, the marginal gains may make this an inherently 
attractive option for early uses of machine learning underwriting models. However, for smaller 
lenders these gains may not justify taking on the additional operational and compliance risks that 
more complex models entail. 

78   In this context, an attribute refers to a variable included in a model’s dataset. This could include input variables, such as an individual’s 
income, as well as a target or output variable (such as whether an individual is likely to default on a loan).

79   In this report, the term model complexity is used synonymously with the term model opacity. Both speak to the challenge of explaining 
and understanding various determinants of a model’s behavior from various perspectives.

80   See Selbst & Barocas at 1096 (“  The more variables that the model includes, the more difficult it will be to keep all the interactions between 
variables in mind and thus predict how the model would behave given any particular input”).

81   Ostmann & Dorobantu at 19. 
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Using additional, unconventional data can introduce other difficulties when training complex 
models.82 If a machine learning model overfits to training data that has a large number of missing 
observations or is very noisy, for instance, it may identify signals that are not actually relevant to 
its prediction task. Overfitting can be managed using model constraints such as regularization (see 
Section 3.4.1).

3.2.3.2 Model Size
The ability of machine learning algorithms to identify and assess a greater number of features 

enhances model complexity and the technological challenges associated with explaining machine 
learning underwriting models. The difference in understanding and managing a model that considers 
dozens of variables or features to one that uses thousands or millions is the simplest statement of 
this problem. Size in turn affects the number of feature interactions, and potentially their complex-
ity. For ensemble models, which reflect use of several individual models in a sequence, the number 
of sub-models, the overall size of the model, and the number of features considered likely increase 
complexity.

The size of a model is often reflected by the number of parameters it uses.83 For example, a 
logistic regression may use up to 100 parameters—roughly one for each input feature. On the other 
hand, an artificial neural network with hundreds of hidden nodes may have tens of thousands of 
parameters—reflecting the weights of each connection between nodes in the network. Larger mod-
els with more parameters can represent more complex relationships between variables, meaning 
they can capture more relevant patterns in the data, and also that they can be far less transparent 
than smaller models.

In addition to parameters, developers’ decisions about how to set hyperparameters such as the 
depth of a tree model or number of layers in a neural network can also make a model bigger and 
more complex.84 For instance, a higher number of layers may generate more accurate predictions but 
can also increase model complexity. Similarly, increasing the depth of a tree may increase predictive 
performance, but may make the model less interpretable.

3.2.3.3 Nature of Individual Features
The nature of the features used in machine learning models can also be challenging, regardless 

of the number of features being used. Individual features may increase model complexity where 
they rely on math that is challenging to unpack on its own or in the context of models with more 
intricate architectures (such as neural networks with high numbers of layers). Debt-to-income 
ratio is an example of a simple feature, in part because it is derived from two input variables and 
involves a simple, obvious transformation. Machine learning models have the ability to generate 

82   Id.
83   Model parameters are variables in the model that are configured using the training data and are fitted to the model. When the training 

is initialized, the parameters are usually set to a random value (or zero). As training progresses, these random values are updated using an 
optimization algorithm, which performs a search through possible parameter values to learn and update the values. The final parameters 
that are determined at the end constitute the trained model. Examples of parameters are coefficients (or weights) of linear and logistic 
regression models and weights and the biases for neural networks.

84   Instead of being learned from the training data, hyperparameters are set manually by model developers before training and help generate 
a more efficient and accurate optimization process to estimate and optimize the model parameters. A developer uses search algorithms, 
like grid and random search, to help tune model hyperparameters and improve model accuracy. Examples of hyperparameters include 
depth of a tree and number of layers in a neural network.
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and consider features that capture both non-monotonic85 and non-linear86 relationships, which 
enable these models to gather more detailed and granular information about the data used in the 
models but also increase model complexity.

3.2.3.4 Relationships Between Features
Feature interactions pose a critical challenge to enabling appropriate model transparency and 

oversight. This is especially true where feature interactions involve latent features, which are vari-
ables that inform a model’s prediction, but are not part of the training or input data or the prediction 
itself. Latent features are generated by a machine learning algorithm from variables in the dataset 
and serve as internal or interim analyses that help determine the model’s prediction. In general, the 
greater the number of the latent features and the more difficult those relationships are to describe 
on their own, the more complex the model will be. 

Much of the improvement that machine learning offers may derive from feature interactions, 
especially those related to latent features, but many emerging explainability techniques assume 
those interactions do not affect the model’s predictions. Complexity resulting from feature interac-
tions can increase along with the number of input variables and types of datasets being used and 
the number of observations in these datasets.

3.3 The Debate About Interpretable and Explainable Machine Learning
A model’s use will determine the level of necessary transparency and shape fundamental choices 

that developers make about how to build and manage a particular model. Some models have a 
higher degree of transparency by virtue of their structure and design. These models are said to be 
inherently interpretable or self-explanatory and can generally meet transparency needs on their 
own.87 Others lack architecture that is transparent by design and are therefore less interpretable. 
These models require the use of additional models or analyses designed to explain the model—that 
is, post hoc explainability methods designed to improve stakeholders’ ability to access and under-
stand information about the model’s behavior and the bases of its predictions. These interventions 
add an “observable component” to complex models to enhance stakeholders’ ability to understand 
the models’ behavior and to accept or challenge their decisions.88 

This choice between inherently interpretable models and models that require post hoc explainabil-
ity methods has shaped early adoption of machine learning underwriting models. Firms and research-
ers alike are working to understand better whether lenders should use inherently interpretable models 
or pair less interpretable models with supplemental explainability methods to satisfy transparency 
needs. Proponents of using only inherently interpretable models argue that well-designed models of 
this kind perform as well as more complex models and deliver the necessary transparency. Importantly, 
they do so without relying on secondary techniques and analyses that introduce further uncertainty 

85   Adding salt to a savory dish presents an intuitive example of a non-monotonic relationship. A small amount of salt will generally make the 
dish taste better. However, after a certain point, adding salt will not improve the taste of the dish and, in fact, will make the dish taste 
worse. This is an example of a non-monotonic relationship, as the relationship is positive in some cases and negative in others, which 
means the relationship is not one-directional. 

86   A non-linear relationship is one in which increases or decreases in an input variable do not always produce proportionally consistent 
changes in the target or output variable, where each input variable impacts the model independently (no feature interactions). For exam-
ple, parents of multiple children will know that going from one child to two in a household has a larger effect on the overall amount of 
parental attention required than the change from zero children to one.

87   Christoph Molnar, Interpretable Machine Learning: A Guide for Making Black Boxes Explainable (2019).
88   Jonathan Johnson, lnterpretability vs. Explainability: The Black Box of Machine Learning, BMC (2020); Leilani Gilpin et al., Explaining Expla-

nations: An Overview of Interpretability of Machine Learning, arXiv:1806.00069v3 (2019).
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and a second layer of trustworthiness questions and can bypass feature engineering.89 Proponents of 
inherently interpretable models also commonly question whether adding a second layer of analytical 
complexity compounds, rather than resolves, the challenge of establishing the trustworthiness of AI 
and machine learning systems and can meet specific transparency requirements.90 Finally, stakehold-
ers suggest that interpretable models may be preferable—all else being equal—because they are less 
costly than running more complex models.91

Proponents of complex models that rely on post hoc explainability techniques argue that this 
approach has the potential to deliver superior predictive accuracy—for lenders and applicants 
alike—while satisfying model transparency needs.92 Industry proponents argue that even inherently 
interpretable models run the risk of being too complicated for a human to interpret completely. 
They point to examples of 100-layered trees, which are complex enough that post hoc explainability 
methods may still be necessary to meet transparency needs.93 

Interpretability and explainability both address important aspects of model transparency. 
Although many stakeholders use the terms interchangeably, this report distinguishes between the 
terms to discuss critical choices model developers make about how to enable necessary trans-
parency when designing and operating specific models. The characteristics of interpretable and 
explainable machine learning models will be considered in turn.

3.3.1 Interpretable Machine Learning Models
In its broadest sense, model interpretability refers to the ability to understand a model’s oper-

ations based largely on its formal notation. To be interpretable, a person should be able to infer 
the following: (1) the types of information or input variables that a model uses, (2) the relationship 
between the input variables and the model’s predictions or outputs; and (3) the data conditions for 
which the model will return a specific result (for example, to receive a credit score of 600, weekly 
income has to be at least $600).94 Interpretable models are ones where stakeholders can relatively 
easily identify correlations or relationships used by the model to predict an outcome because of 
the model’s design or structure.95 Interpretable models include models with comparatively simple 

89   Cynthia Rudin, Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead, 1 
Nature Machine Intelligence 206-215 (May 13, 2019) (reporting “no performance difference between interpretable models and explainable 
models” for credit scoring); Scott Zoldi, Not All Explainable AI is Created Equal, Retail Banker International (Oct. 9, 2019); David J. Hand, 
Classifier Technology and the Illusion of Progress, 21 Statistical Science 1-15 (2006) (“the extra performance to be achieved by more sophis-
ticated classification rules, beyond that attained by simple methods, is small”). See also Agus Sudjianto et al.

90   See Molnar; Alejandro Barredo Arrieta et al., Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges 
toward Responsible Al, arXiv:1910.10045v2 (2019); Rudin; Cynthia Rudin & Joanna Radin, Why Are We Using Black Box Models in Al When 
We Don’t Need To? A Lesson from an Explainable AI Competition, Harvard Data Science Rev. (Issue 1.2, Fall 2019).

91   D. Sculley et al., Hidden Technical Debt in Machine Learning Systems, 2 NIPS’15: Proceedings of the 28th International Conference on Neu-
ral Information Processing Systems at 2503-2511 (2015).

92   Complex machine learning models used in various fields have outperformed inherently interpretable models. See, e.g., Weiwei Jiang & 
Jiayun Luo, An Evaluation of Machine Learning and Deep Learning Models for Drought Prediction Using Weather Data, preprint submitted 
to J. of LATEX Templates, arXiv:2107.02517v1 (2021); Rishi Desai et al., Comparison of Machine Learning Methods With Traditional Models 
for Use of Administrative Claims with Electronic Medical Records to Predict Heart Failure Outcomes, 3 JAMA Network Open (2020); Andrés 
Alonso & José Manuel Carbó, Understanding the Performance of Machine Learning Models to Predict Credit Default: A Novel Approach for 
Supervisory Evaluation, Banco de España Working Paper 2105 (2021); Jay Budzik, Why ZAML Makes Your ML Platform Better, Zest AI (Mar. 
6, 2019).

93   Zachary C. Lipton, The Mythos of Model Interpretability, arXiv:1606.03490v3 (2017); Yan-yan Song & Ying Lu, Decision Tree Methods: 
Applications for Classification and Prediction, 27 Shanghai Archives of Psychiatry 130-135 (2015); Patrick Hall et al. Proposed Guidelines for 
the Responsible Use of Explainable Machine Learning, arXiv:1906.03533v3 (2019).

94   Ostmann & Dorobantu at 49-51. See also Finale Doshi-Velez & Been Kim, Towards a Rigorous Science of Interpretable Machine Learning, 
arXiv:1702.08608v2 (2017); The Royal Society, Explainable AI: The Basics (2019).

95   Johnson.
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structures,96 such as small decision tree models that can be “inspected”97 or may have a limited 
number of features or parameters, which make them more likely to be intuitive and easier to parse 
without the use of additional models or tools. As discussed further below, developers can also 
apply constraints in building the model to increase interpretability. Examples include regularization 
to encourage model sparsity, monotonicity constraints, and constrained deep neural networks to 
produce an interpretable latent space (see Section 3.4.1 and Section 4.1.2.1.3).

Generally, the less complex a model is, the more interpretable it is. But there is no fixed way to 
measure model transparency or interpretability, and various characteristics contribute to a model’s 
interpretability, including the number of model parameters, the number of features used, the level 
and extent of feature engineering, and (for ensemble methods) the number and complexity of 
sub-models. Accordingly, individual implementation choices will affect whether a particular logistic 
regression model with dozens of variables is in practice more interpretable than a neural network 
with limited layers. The following framework suggests a simplified schematic for assessing how 
interpretable a model is and where post hoc explainability techniques may be necessary to supple-
ment the information that is available from the structure of the model itself.98

 »  Inherently Interpretable Models: Models that are typically easier to understand and 
explain are often described as inherently interpretable or self-explanatory. A user can easily 
infer how a particular model input—a data point about an applicant for example—results 
in a model output. This category includes linear and logistic regression, small decision trees, 
and credit scorecards, among others. These models can often be written down using a 
simple diagram or equation. Often, these models are monotonic and linear—meaning that 
changes in an input variable produce changes in the target variable in one direction and of 
a consistent magnitude.

 »  Moderately Interpretable Models: Some models are too complex to be completely 
understood by a user, yet they have some properties that make it easier to understand 
their behavior. For example, large neural networks or tree ensembles are too complex to 
be understood completely, however by adding certain constraints during training, these 
models can be required to be monotonic to improve their transparency. This means that 
changes in a single input variable will always push the output in the same direction.99 
Moderately interpretable models can also be used with post hoc explainability techniques.100

 »  Uninterpretable Models: Some models are so large or complex that it is impossible for 
a user to infer why a particular input leads to a model output. These models include large 
neural networks and ensemble methods that combine several steps or sub-models (such as 
large trees or tree ensembles including XGBoost). These models are usually non-linear and 
non-monotonic with respect to their inputs, meaning it is difficult to predict how chang-
ing a particular input variable will impact model output. Models in this category typically 
require post hoc explainability techniques to meet levels of model transparency necessary 
for the model’s use case.

96   See Patrick Hall & Navdeep Gill, An Introduction to Machine Learning Interpretability: An Applied Perspective on Fairness, Accountability, 
Transparency, and Explainable Al, O’Reilly 13-15, 20-25 (2nd ed. Aug. 2019); Section 4.1.2.1.1 of this report.

97   Arun Rai, Explainable Al: From Black Box to Glass Box, 48 J. of the Academy of Marketing Science 137-141 (2019).
98   Hall & Gill at 11-13.
99   Another example is feature engineering: complex preprocessing methods can produce latent features—for example, trended analysis 

of a series of other features derived by the model. Using latent features can increase the predictive power for even a simple model; for 
example, a moderately interpretable model might use 10 latent features as the inputs to a logistic regression or decision tree.  

100   Feature importance metrics can be generated by models such as random forest or XGBoost.



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
37

Section 3: Model Transparency

This spectrum is illustrated below. Notably, different types of machine learning models—trees 
or neural networks—can be implemented in ways that exhibit different degrees of interpretability, 
depending on a model developers’ choices.101

FIGURE 3.3.1   A FRAMEWORK FOR MODEL INTERPRETABILITY

MODEL TYPE INHERENTLY INTERPRETABLE
 » Linear regression
 » Scorecards
 » Generalized linear models
 » Small decision trees
 » Logistic regression

MODERATELY INTERPRETABLE
 » Monotonic tree ensembles
 » Sparse neural networks
 » Support vector machines
 » Generalized additive models
 » kNN

UNINTERPRETABLE
 » Random forests
 » Deep neural networks

KEY MODEL  
CHARACTERISTICS

-    Model Size +

+    Linearity -

+    Monotonicity -

-     Complexity +

As shown above and applying the factors related to model complexity discussed earlier in Section 
3, inherently interpretable models tend to be smaller and less complex, in part because they use linear 
and monotonic relationships. 

Accordingly, the way in which inherently interpretable models permit review and oversight has 
made them an attractive option for some lenders that are using machine learning underwriting mod-
els. However, as discussed above, a structure that facilitates interpretability may limit the predictive 
power of the model by limiting the kinds of relationships that the model can identify and use.102 
Proponents of interpretable models suggest any such tradeoffs in this regard reflect the demands of 
applied use in the context of lending—that underwriting models need to reflect intuitive, defensible 
relationships between an applicant’s financial capabilities and behavior and the model’s prediction 
of default risk. However, for other practitioners, the prospect of better predictive power in complex 
models has motivated the search for alternative approaches to making complex or uninterpretable 
models more transparent.

3.3.2 Post Hoc Explanations for Machine Learning Models
Model explainability refers to the ability of model stakeholders to understand model behavior— 

that is, how a particular prediction was made or result was reached.103 Two general types of 
explanations can serve these needs. Global explanations describe the high-level decision-making 
processes used by a model and are relevant to evaluating a model’s overall behavior and fitness-
for-use. Local explanations identify the basis for specific decisions directed by the model. Both 
types of explanations are important to enable appropriate human understanding and oversight 
of AI and machine learning models in financial services contexts.104

The explainability of any predictive model can be evaluated, but this issue is particularly 
important for models that may not be sufficiently transparent without supplemental models and 

101  Model types identified in the diagram are discussed in depth in Section 4.
102   See generally Hall & Gill.
103  See generally The Royal Society.
104   Id.
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tools. Post hoc techniques have been designed to satisfy transparency needs without affecting the 
structure or operations of the underlying model, but may impose other costs on the model user, 
such as requiring large volumes of data, computational power, and additional expertise.

Reliance on post hoc explainability techniques raises independent trustworthiness questions, as 
the methods that produce information about the underlying model’s behavior are themselves new 
and complex.105 For some stakeholders, these questions are significant enough to warrant restricting 
firm practice to interpretable models for credit underwriting and score development. More generally, 
there is neither an established methodology for evaluating the utility and quality of information 
produced by post hoc explainability techniques, nor a consensus about how to assess whether and 
in what circumstances that information is suitable for important oversight and governance needs.106

Certain technical considerations provide a starting point for evaluating individual explainability 
techniques based on use case, priorities, and resources. For example, the accuracy of an explainabil-
ity technique’s outputs can be measured in terms of consistency and stability—that is, whether the 
explanation produced is similar across similar applicants assessed by the same model or between 
different models producing similar predictions trained on the same data. How well the explainability 
technique approximates the underlying model—or its fidelity as measured in metrics like R2 scores for 
a surrogate model—can help establish how well the technique works. The overall complexity and spe-
cific data and computational demands of explainability techniques are also relevant—as these factors 
will increase computation time and cost and may heighten concerns about the trustworthiness of the 
information being produced.

However, these considerations may not fully speak to whether the information produced by 
current explainability techniques is sufficiently responsive to applicable legal, regulatory, and firm 
policy requirements. The fact that most explainability techniques necessarily simplify or compress 
information about the model they describe naturally raises questions about what information about 
the underlying model’s operation the explainability technique preserves and why.107 

These questions speak to a critical need to make complex models sufficiently transparent to be 
comprehensible by a variety of stakeholders, each with their own level and type of expertise and 
their own need for information. A data scientist or credit risk expert will need different kinds of 
information about an underwriting model’s operation than a financial services executive, a compli-
ance manager, an examiner, an advocate, or a credit applicant.

3.4 Options for Enabling Transparency
This section reviews the choices model developers make and the tools available to them to 

improve the transparency of models—both the common constraints used to produce models with 
structures that make them interpretable on their own and ex post explainability methods available 
to help stakeholders analyze, explain, and understand uninterpretable or more complex models. 
Choices about the type of model used and about data sources can also affect transparency, as dis-
cussed further in Section 4.

The diagram below summarizes the relationship between various options to improve model 
transparency.

105   In the case of AI in the medical sector, see, e.g., Boris Babic & Sara Gerke, Explaining Medical AI Is Easier Said Than Done, Stat (Jul. 21, 2021).
106   Agus Sudjianto, What We Need Is Interpretable and Not Explainable Machine Learning, presentation at Cogilytica Machine Learning Life-

cycle Conference, slides 5-6 (Jan. 2021).
107   See Laura Blattner et al., Unpacking the Black Box: Regulating Algorithmic Decisions (Jul. 21, 2021).
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FIGURE 3.4   OPTIONS FOR ENABLING MODEL TRANSPARENCY

ILLUSTRATIVE 
CONSTRAINTS

Model developers can use constraints 
during model selection and training to 
produce more interpretable models. 

MODEL TYPE INHERENTLY INTERPRETABLE
 » Linear regression
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 » Small decision trees
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 » Sparse neural networks
 » Support vector machines
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 » SHAP, LIME 
 » Integrated Gradients
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 » Counterfactuals
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Model developers can pair less  
interpretable models with post hoc 
explainability techniques to improve 
their transparency. 

In order to produce a machine learning underwriting model with greater transparency, a developer 
can either apply constraints to the learning algorithm before training to limit the resulting model to 
certain characteristics or use supplemental models or analyses to explain how the underwriting model 
works.108 

3.4.1 Common Constraints
When building a machine learning model, a developer can choose among a variety of approaches 

for limiting the complexity of the model that the algorithm produces in addition to limiting the 
scope of input data. In order to balance model complexity and transparency, developers may also 
choose to limit the model to certain kinds of relationships or limit the number of relationships 
considered by the model. This decision occurs when the model developer selects an algorithm and 
readies it for training (as discussed more fully in Section 4).

108   For illustrative purposes, this report characterizes this as an either/or choice. But some stakeholders argue that model developers should 
pair inherently interpretable models with post hoc explainability techniques in certain contexts, to improve the accuracy of explanations 
produced in contexts like generating adverse action notices. See Patrick Hall et al., Proposed Guidelines for the Responsible Use of Explain-
able Machine Learning, arXiv:1906.03533v3 (2019); see also Scott Lundberg & Su-In Lee, A Unified Approach to Interpreting Model Predic-
tions, 31st Conference on Neural Information Processing Systems, arXiv:1705.07874v2 (2017); Scott Lundberg et al., Consistent Individualized 
Feature Attribution for Tree Ensembles, arXiv:1802.03888v3 (2019).
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Constraints relevant to the development of underwriting models include:

3.4.1.1 Linearity Constraints
Linearity constraints are imposed to ensure a one-to-one relationship between input variables 

and the target variable. In other words, the terms of the constraint are of the first-order, which 
means that for every unit change in a given independent variable, the target variable changes by 
a fixed amount. In machine learning models, imposing linearity constraints improves transparency 
as the effect of a change in the feature has a constant change in the target variable. In the context 
of credit underwriting, a linear relationship may suggest that for every $100 increase in bank card 
balances, the probability of being approved for loan decreases by 2 percentage points, which makes 
the association between bank card balances and the probability of being approved for loan very 
transparent. This also enables a lender to provide a clear explanation for why a person was not 
approved or how a person can increase their chances of being approved in the future. However, 
the models with linearity constraints often are not able to capture important and more complex 
relationships to default risk, which may reduce their accuracy. 

3.4.1.2  Monotonicity Constraints 
Monotonicity constraints limit the algorithm to developing a model that only uses one-directional  

relationships between the input data and the predictions of the target variable. When such con-
straints are imposed, any increase in the feature value that changes the model output always leads 
either to an increase or decrease in the model output (such as the risk of applicant default). 

In the context of underwriting, consider an example where consumers who have low credit card 
balances and those who have high credit card balances tend to be at higher risks of default than 
consumers in the middle. With monotonicity constraints, an increase in credit card balances will 
always lead to either an increase or decrease in predicted default risk, depending on the direction 
of the monotonicity constraint. This constraint can improve the intuitiveness of this model and 
its transparency: consumers know that an increase in their card balances will always lower their 
credit score. However, this monotonicity constraint means that the model cannot reflect the actual 
relationship between credit card balances and default: consumers in the “middle” of the credit 
card balances curve have lower default risk than those with higher or lower credit card balances. A 
monotonic model cannot reflect this distribution through consideration of credit card balances. If 
the model nevertheless predicts that customers in the middle of the range of values for credit card 
balances pose lower default risk, this effect will come from assessment of other features.

3.4.1.3 Regularization
Regularization and associated techniques create sparse models by limiting the number of fea-

tures used as inputs, or by limiting the number of weights in a neural network.109 Feature selection 
and engineering are ways to limit the model to the features that are the most relevant to the target 
variable, which can improve predictiveness and stability and lead to more transparent models. In 
some cases, sparsity is achieved by dropping variables that are highly correlated. For example, some 
types of regularization have the effect of keeping the number of parameters small—for example, 
a model trained with heavy L1 regularization, which is a technique designed to limit the number of 
parameters—will have a small number of parameters, which has the effect of creating sparsity as 
well as mitigating potential overfitting problems. 

109  Robert Tibshirani, Regression Shrinkage and Selection via the Lasso, 58 J. of the Royal Statistical Society 267-288 (1996).
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3.4.2 Post Hoc Explainability Techniques
In the last decade, data scientists have made considerable strides in developing supplemental 

methods to analyze complex machine learning models to better explain and understand their pre-
dictions. These post hoc explainability techniques and taxonomies for categorizing them are rapidly 
evolving, especially as more evidence is gathered about their capabilities and performance in the 
context of specific applications. 

This section first provides an overview and analysis of several individual post hoc explainability 
techniques that are potentially relevant to credit underwriting in the following categories: surrogate 
models, feature importance explainability methods, and example-based explainability methods. It 
then steps back to discuss potential sources of explanation errors across different types of post hoc 
techniques that cause some stakeholders to advocate for limiting machine learning in credit under-
writing to inherently interpretable models. 

3.4.2.1 Surrogate Models 
Surrogate models are sometimes used to explain uninterpretable or black box models, such as 

large tree ensembles (including XGBoost) or deep neural networks. Surrogate models are typically 
small and interpretable models, such as shallow decision trees, rule sets, or regression models. Credit 
scorecards can also serve this purpose.110 Surrogate models are designed to closely mimic the origi-
nal or underlying model, and they are trained on predictions from that model.

Surrogate models come in two general types: global and local surrogate models. Global surrogate 
models are designed to mimic the overall behavior of the underlying model for every input value. 
However, global surrogates can often be too general to produce useful insight into the underlying 
model. For example, the features that impact a default model output for credit card applicants may 
be very different for applicants who already have a credit card, compared to those who don’t. Even 
a small global surrogate model may not capture this nuance. Instead, practitioners can use local 
surrogate models, which mimic the behavior of the original model for feature values close to that of 
a particular applicant and are used to explain that particular applicant’s prediction. Local Interpre-
table Model-Agnostic Explanations—or LIME—is one such approach that is widely used to explain 
models and has influenced the development of other post hoc explainability techniques. 

Local Interpretable Model-Agnostic Explanations (LIME)
Description: Local Interpretable Model-Agnostic Explanations (LIME) is an explainability tech-

nique for complex models that uses local linear surrogate models around a particular data point to 
approximate the complex model’s output.111 The resulting local surrogate models are used to both 
explain the model’s behavior around individual data points and to quantify feature importance for 
the overall model.

In general terms, LIME develops surrogate models by sampling several data points and obtaining 
the associated predicted outcomes from the complex model. LIME then assigns weights based on 
how far away the sample points are from the particular point being explained, giving a larger weight 
to the sampled points closest to the point of interest. Finally, LIME trains an interpretable model—
typically a linear model—on the weighted points to produce the surrogate model. This surrogate 

110   For a detailed description of credit scorecards, see Section 4.3.2 of this report.   
111   Damien Garreau & Ulrike von Luxburg, Explaining the Explainer: A First Theoretical Analysis of LIME, Proceedings of the 23rd International 

Conference on Artificial Intelligence and Statistics, arXiv:2001.03447v2 (2020).
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model will not altogether explain how the model arrived at the result, but instead how slight changes 
may affect the ultimate prediction. In the context of an underwriting model that might be sampling 
nearby data points to train a surrogate model to explain the prediction of a particular applicant’s 
default risk. LIME includes a fidelity measure, giving the user insight into how well the explanation 
from the surrogate model approximates the underlying or original model. 

FIGURE 3.4.2.1   ILLUSTRATIVE LIME ANALYSIS112

Figure 3.4.2.1 shows a complex model’s output values represented by the 
blue and red shaded areas. The red crosses and blue dots are sampled points, 
while the bold red cross is the individual point LIME is explaining. To explain 
that point, LIME generates a dashed line that is close to the nearby border 
between the blue and red shaded areas.

The characteristics of LIME’s surrogate models may diverge from the models they are used to 
explain in several significant ways. For example, the surrogate is often a linear model. It may also 
have substantially fewer features than the underlying model. As a result, the explanation produced 
by the surrogate may not perform well in capturing and explaining feature interactions. For example, 
credit card applicants may be at high risk of default if they have both (1) more than two credit cards, 
and (2) high credit utilization. On the other hand, suppose that applicants who have either (1) or (2) 
are not at high risk of default. A linear model cannot represent this effect in the underlying model. 

LIME is generally used today as a baseline to compare the outputs and performance of other 
explainability tools against or to generate insight into feature importance as discussed further 
below.113

Analysis: LIME is versatile and adaptable since it can be used to explain a variety of types of 
models.114 It also works across a variety of data types, including text, tabular data, and images. The 
primary challenge for LIME is derived from the inherent difficulty of using a simplified model to 
explain a much more complicated model. This challenge is more acute when the surrogate is a linear 
model, since the surrogate in this instance may not do well in mimicking the effect of non-linear 
relationships and feature interactions in the underlying model. To resolve this, LIME uses a local 
surrogate model instead of trying to mimic the underlying or original model at all points and builds 

112   Marco Tulio Ribeiro et al., “Why Should I Trust You?” Explaining the Predictions of Any Classifier, Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, arXiv:1602.04938v3 (2016).

113   Sérgio Jesus et al., How Can I Choose an Explainer?: An Application-Grounded Evaluation of Post-Hoc Explanations, FAccT ‘21: Proceedings 
of the 2021 ACM Conference on Fairness, Accountability, and Transparency 805-815 (2021).

114   Jürgen Dieber & Sabrina Kirrane, Why Model Why? Assessing the Strengths and Limitations of LIME, arXiv:2012.00093v1 (2020).
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a separate surrogate model for each explanation it produces. This significantly reduces the compu-
tational speed of LIME.

When LIME is used to understand the importance of specific features in a model, the feature 
importance values that LIME generates have very clear meaning: they are derived from linear model 
weights from the local surrogate model. But these weights can be sensitive to changes in LIME 
parameters—such as the number of samples used (see Figure 3.4.2.1). Changes to these parameters 
can substantially change the local surrogate model, and feature importance values, returned by LIME. 
When LIME explanations are aggregated across an entire dataset, they are sometimes interpreted as 
global measures of feature importance—that is, how important a feature is to the model’s overall 
behavior. This presentation may be deceptive in circumstances where the model assesses features 
differently for different consumers, for example. When this occurs, LIME explanations cannot convey 
this nuance when aggregated across an entire dataset.

Computationally, LIME requires a way of telling how “similar” two given points are, and this must 
be supplied by the model developer. LIME’s explanations are relatively sensitive to this weighting 
function, which is based on the distances between a sample point and the particular point of inter-
est. In practice, choosing a distance function that produces useful explanations can be challenging. 

3.4.2.2 Feature Importance Explainability Methods
Feature importance techniques evaluate how much individual variables contribute to a model’s 

prediction. In these methods, data are usually perturbed or permuted—meaning they are purpose-
fully distorted or altered in a variety of ways—to determine how those changes affect the model’s 
predictions. The aggregated effect of those changes speak to how much a variable affects the 
model’s predictions.115 Feature importance or variable importance scores can be presented in charts 
with associated predictions, or they can be aggregated together to describe the importance of a 
variable on the model’s predictions overall, and graphed for comparison. 

Feature importance explainability methods include Shapley Additive Explanation (SHAP), inte-
grated gradients, partial dependence plots, individual conditional expectation plots, and accumulated 
local effects plots.116 

Shapley Additive Explanations (SHAP)
Description: The Shapley value has been the method chiefly used for the purposes of explain-

ing complex model outputs. SHAP uses mathematical methods derived from a significant body of 
cooperative game theory research117 to analyze and explain the contributions of particular features 
to a model’s prediction. The concept of the Shapley value method is as follows:118 in a cooperative 
game with N players and a function that values how much total output is generated if all the players 
contribute together, the Shapley value is a method that attempts to measure the individual con-
tribution of each player to the output generated by the cooperation of all players. If the features 
are the players in a given complex model, from an economic standpoint, it can be interpreted as a 

115   See Molnar.
116   Although LIME uses surrogate models, some taxonomies of explainability techniques may categorize LIME with feature importance 

methods since it is widely used to evaluate the contributions that individual features make to a model’s predictions. Further, although 
packages in Python and R like XGBoost include feature importance explainability methods, this section focuses primarily on model 
agnostic methods. See also Molnar.

117   L.S. Shapley, Notes on the n-Person Game, II: The Value of an n-Person Game, U.S. Air Force Project RAND Research Memorandum (1951); 
Robert J. Aumann & Lloyd S. Shapley, Values of Non-Atomic Games, Princeton Legacy Library (2016). 

118   Lundberg & Lee.
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weighted average of a feature’s marginal contribution to every possible subset of grouped features.119 
SHAP methods currently available as machine learning explainability tools are best used on additive 
models.120 SHAP is being used to explain complex models in consumer credit and other sectors such 
as medicine.121 

Similar to LIME, SHAP explains how a model behaves locally. In the context of credit under-
writing, local predictions can be helpful for generating adverse action notices for individuals who 
are denied credit.122 However, unlike LIME, SHAP measures feature importance by conditionally 
averaging over features from a data point. This method measures feature importance by removing 
features from a data point and quantifying how much the removed features affect the model's 
output.123 

Although this approach can be used with underlying models of various kinds, specialized vari-
ants of SHAP—such as tree SHAP and linear SHAP—have emerged to be used with particular model 
types and typically operate faster and produce more reliable outputs than generic implementations. 

Analysis: SHAP is attractive to many practitioners because it is available as an open-source 
tool. SHAP values are also easy to interpret. SHAP values are often presented in plots that show the 
features and the degree to which they contribute to the target variable and facilitate interpretation. 
Furthermore, several model-specific versions of SHAP can be faster to calculate than other explain-
ability techniques.

However, there are several criticisms of SHAP. First, many machine learning models cannot nat-
urally handle “missing” features, as required by SHAP. This means that “missingness” is typically 
achieved by replacing a feature with a nominal value (such as the average over the entire dataset). 
It is unclear whether the theoretical benefits of SHAP hold up under these approximations. Second, 
like many other explanation methods including LIME, SHAP makes the unrealistic assumption that 
features are uncorrelated. This assumption glosses over real-world nuance present in real datasets 
including those used in financial services. Finally, calculating exact SHAP values can require signif-
icant time and computational resources even where model-specific versions of SHAP are used, so 
approximation or sampling methods are often used instead with some corresponding tradeoff in 
the quality of explanations.124 If too few samples are used, moreover, the resulting SHAP values can 
be noisy, and not reflective of actual model behavior.

Integrated Gradients
Description: Integrated gradients125 were developed to explain outputs from a differentiable 

model—that is, a model where the change (or derivative) in model output can be easily calculated.126 

119   I. Elizabeth Kumar et al., Problems with Shapley-Value-Based Explanations as Feature Importance Measures, Proceedings of the 37th 
International Conference on Machine Learning, 119 Proceedings of Machine Learning Research, arXiv:2002.11097v2 (2020).

120   Additive models are linear models which contain special functions that can learn non-linear relationships in the data.
121   See Upstart, Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, Including 

Machine Learning at 3-4.
122   Id. at 4.
123   Mathematically, this process works as follows: if the point to be explained has three associated features, x1, x2, and x3, binary features 

are assigned to each one representing whether the feature is known or unknown (so z1 = 0 if x1 is unknown or missing, and z2 = 1 if x2 
is known). Next, SHAP values (feature importance values) are generated (a1, a2, a3) which represent a score for each of the features. The 
higher the score, the more important the feature. 

124   Kumar et al.
125   Gradient, in simple terms, refers to the rate of change of a variable. In a machine learning model, gradient refers to a change in the target 

variable due to a change in the value of a feature.
126   Mukund Sundararajan et al., Axiomatic Attribution for Deep Networks, Proceedings of the 34th International Conference on Machine 

Learning, 70 Proceedings of Machine Learning Research 3319-3328 (2017).
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Many popular machine learning models are differentiable, including neural networks. This method 
works by summing the gradients of the model output with respect to each feature, along some path. 
Features with greater summed gradients are seen as more important to the model output. Gradients 
are summed over a path of input space, between a data point to be explained (X1) and some reference 
point (X0). The reference point X0 is meant to be a “neutral” point. In computer vision applications, X0 
is usually a blank image; in financial services, X0 might be an applicant with average features. 

Analysis: Integrated gradients are attractive for a variety of reasons: they are intuitive, easy to 
implement, and available in several open-source formats. Although this method does not assume 
feature independence like LIME or SHAP, it may not do better in explaining feature interactions. 
Integrated gradients are defined only for continuous models,127 though some extensions have been 
proposed for discontinuous models, such as tree ensembles and other piecewise continuous func-
tions.128 Further, defining a general reference point X0 has a significant impact on the resulting 
explanation, although choosing this point is difficult in practice. Nevertheless, this method remains 
popular in applications such as computer vision.129

Partial Dependence Plots
Description: Partial dependence plots (PD plots or PDPs) are common visualization methods 

that depict how an individual feature interacts with the model’s predictions.130 For each value of a 
given feature, the PD plot shows the average predicted outcome.

Consider as an example an underwriting model that analyzes the following features: number of 
prior loans taken, number of past defaults, and number of outstanding loans. If the model developer 
is interested in how the number of past defaults affects the model’s prediction of the likelihood of 
default, a PD plot feeds the underlying model every possible value for the number of past defaults 
for each possible combination of features in order to understand how the model works. For a single 
value of the number of past defaults, it will average all those possible combinations and plot the 
average, then will do the same for all values of the number of past defaults. This means that for every 
data point, the PD plot will replace the number of defaults with zero, feed a new set of features into 
the underlying or original model, take the average of the resulting predicted scores, and plot them as 
a single point on the PD plot. This process is repeated for every value observed in the dataset for the 
number of past defaults. This ultimately creates a plot of averaged predicted estimates of default 
probability against all possible numbers for the number of defaults. This analysis can be done for 
any feature. The user can then see whether or not this relationship is linear, or if there is any value 
that is particularly surprising that might indicate inaccuracies in the dataset, in the model, or a novel 
relationship worth analyzing. 

Analysis: PD plots are easy to understand and make identifying any remarkable behavior in 
the relationship between a single feature and the model’s prediction easy to detect and intuitive.131 
They are designed to represent the relationship between features and the outcome at a global level, 

127   Continuous models are models which use data that can take any value, such as decimal points. In contrast, discrete models use data at 
fixed or discrete intervals, such as 0 and 1.

128   John Merrill et al., Generalized Integrated Gradients: A Practical Method for Explaining Diverse Ensembles, submitted to the J. of Machine 
Learning Research, arXiv:1909.01869v2 (2019).

129   Examples include medicine and drug discovery. See Rory Sayres et al., Using a Deep Learning Algorithm and Integrated Gradients Expla-
nation to Assist Grading for Diabetic Retinopathy, 126 Ophthalmology 552-564 (2019); Kristina Preuer et al., Interpretable Deep Learning in 
Drug Discovery, in Explainable AI: Interpreting, Explaining, and Visualizing Deep Learning 331-345 (2019).

130   Daniel W. Apley & Jingyu Zhu, Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models, arXiv:1612.08468 
(2019).

131 Id.
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which makes PD plots suitable for model development, but not for generating individual applicant 
explanations. Additionally, they can be used with any type of machine learning model. However, PD 
plots rely on individual data points that do not exist in the original dataset. The method replaces 
real instances found in the dataset with synthetic feature pairings in order to make its averaged pre-
dictions over a larger set. Where the synthetic data points do not represent well the actual dataset, 
this can introduce bias and lead to inaccurate estimates of the effect of the feature on the results. 
Further, PD plots assume that each feature is independent of each other, which may often not be 
the case. This assumption may limit the utility of this approach in helping understand how feature 
interactions and correlated features affect the predictions produced by complex models. Figure 
3.4.2.2.2 shows PD plots compared to the following methods.

Individual Conditional Expectation Plots
Description: Individual Conditional Expectation (ICE) plots extend PD plots by displaying the 

relationship between each individual input and its predicted outcome. This is in contrast to PDPs, 
which create one line overall for the average. ICE plots supplement PD plots by improving insight 
into feature interactions. PD plots are poor visualization tools for understanding a dataset that has 
features that interact with each other in part because averaging across all instances of a feature can 
often obscure relationships between two features on the output predicted by the model. ICE plots, 
in contrast, do not involve averaging.

For example, in a sample ICE plot such as Figure 3.4.2.2.1 below, if “x_1” axis represents the 
number of past defaults and “partial yhat” represents the predicted probability of default, then 
the curves would show the change in the predicted probability of default as the number of past 
defaults varies. These plots also provide insight into how the number of past defaults interacts 
with, for example, the number of months since the last credit card was opened. If the number of 
past defaults and number of months since the last credit card opened were to show some inter-
action on the predicted probability of default, then the curve of the lines for instances where the 
individual has opened a credit card one month ago for those who opened a card 24 months ago 
would have different shapes/slopes. In this hypothetical example depicted in Figure 3.4.2.2.1, lines 
representing different amounts of elapsed time since the applicant’s last card was opened do not 
interact in the output of predicting default since the curves all have the same parabolic shape and 
simply show a shift along the y-axis. This means that based on this figure, number of months since 
last credit card opened has no non-linear relationship with number of past defaults and so does 
not change its influence on predicted defaults.
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FIGURE 3.4.2.2.1   ILLUSTRATIVE ICE PLOT132

(a) ICE

Analysis: ICE plots show each instance or person in the dataset as a single line, where the value 
of the feature of interest varies. This makes the plot more interpretable to the user who can even 
focus on a given line and see how changing a feature like the number of past defaults might affect 
the given individual.133 Similar to PDPs, ICE plots are not able to generate reliable estimates with 
correlated features, which may create congested plots and means that they cannot fully explain 
relationships between features.

Accumulated Local Effects Plots
Description: Accumulated Local Effects (ALE) plots go beyond PD plots by focusing only on 

changing the feature of interest rather than every feature involved in the model.134 Instead of exhaus-
tively trying to predict the relationship between a feature and the outcome of interest, ALE does 
not include every feature involved in the model and instead focuses only on changing the feature 
that will be plotted against and takes the average prediction over a small interval of the data. This 
means that the plotting procedure for ALE is similar to PDP, but in the example described above, 
the supporting features (number of prior loans, number of outstanding loans) remain constant and 
only the number of defaults changes for an ALE calculation. While PD plots explain the model by 
providing every possible combination of feature values and use synthetic data points to do so, ALE 
only averages over values that exist in the actual training data. Since divergences between actual 
and synthetic data in PD plots can introduce bias, ALE is generally more accurate than PD plots in 
producing explanations, but requires more data than other methods. 

132   Alex Goldstein et al., Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation,  
arXiv:1309.6392v2 (2014).

133   Id. at 10.
134   Apley & Zhu.
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Analysis: ALE is computationally more efficient than PD plots and, unlike PD plots, ALE explana-
tions can show feature correlations as well as feature interactions.135 However, ALE presents the user 
with a large range of effects a feature can have on the output, and this range can support a wider 
range of interpretations of the information presented. ALE plots are somewhat less intuitive than PD 
and ICE plots, and at the same time they convey more nuanced information about model behavior. 

FIGURE 3.4.2.2.2   ILLUSTRATIVE ALE AND PDP PLOTS136

Figure 3.4.2.2.2 above shows ALE plots on the left, and PD plots on the right, 
with the black line representing true effects in all plots. This shows that with 
every iteration of the model, ALE plots are more consistent with the true 
effect of model features on the output than the PD plots. 

3.4.2.3 Example-Based Explainability Techniques
Example-based explanations generate explanations by perturbing selected data instances 

from the model to see how the changes affect the associated prediction, rather than the feature- 
importance explanations above which create “summaries” of the effect of particular variables.137 
Conceptually, an example-based explanation is similar to a human relying on historic examples from 
his or her own experience to predict the outcome of a new experience.138 

There are two primary forms of example-based explainability techniques relevant to current 
practice: counterfactual explanations and adversarial perturbation.139

135   Id.
136   Id. at 13.
137   Molnar.
138   Susanne Dandl & Christoph Molnar, Counterfactual Explanations (2019).
139   Additional types of example-based explanations include prototype and criticism examples. Prototype examples explain a particular class 

or model output. For example, to describe the model output “accepted credit card application,” a developer might generate 10 prototyp-
ical applicants, which are typical “accepted” applications, as well as 10 typical “rejected” applications. Criticism examples are designed 
to illustrate atypical examples. For instance, a criticism example for the credit card model might be an applicant who is similar to many 
accepted applicants, but was actually rejected.
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Counterfactual Explanations
Description: Counterfactuals describe—either in plain text or in charts with data—how much 

a data point has to change in order to change the prediction. In other words, if someone is denied 
credit, a counterfactual explanation will search for the smallest possible change someone could 
make to the factors assessed in an underwriting analysis to change the model’s prediction of his 
or her likelihood of default. When displayed in plain text, a counterfactual might say “If X had not 
occurred, Y would not have occurred”, or, “If a person had not made a late mortgage payment in 
2019, they would not have been denied credit in 2020.” These changes might be in one factor (for 
example, “increase your income by $2,000”) or in multiple factors (for example, “close two of your 
credit cards and pay off all debt”). Counterfactuals can also generate charts of numbers that repre-
sent the smallest changes which can be made to change the relevant outcome. These numbers can 
be graphed to represent a linear relationship between inputs and predictions. So the chart might 
show, if a person made $2,000 more per year, or had three fewer credit cards, they would have been 
accepted for credit.140

Counterfactuals might be especially useful for helping to generate adverse action notices used in 
underwriting as they provide a clear statement of how a change in a particular input would affect 
the model’s prediction of default and the lender’s decision about whether to extend credit.141 

Analysis: Building counterfactual explanations does not require access to the underlying data 
used to train the model—unlike other explainability methods—which may be useful in cases where 
data cannot be shared. Rather, counterfactual explanations can be generated using a sample input 
data point (e.g., a credit card applicant) and the model (an underwriting model). Counterfactual 
examples are identified by making small modifications to the input data point until the output 
changes by a sufficient amount.

Several counterfactual examples can be generated to show a range of changes to relevant 
characteristics might affect the model’s prediction. For example, a counterfactual analysis may 
suggest a dozen ways that an unsuccessful applicant for a loan could improve the chances of a 
future approval. While this provides useful information that is not generated by various other 
explainability techniques, these explanations may create a false sense of precision or be confusing 
to applicants. For instance, some counterfactual changes—like eliminating a bankruptcy—may not 
be practical, while others may simply be confusing to understand and prioritize, and ultimately 
have limited use for consumers. 

Adversarial Examples
Description: Adversarial examples are used to illustrate cases where a model makes mistakes or 

errors. The intent is to identify possible weaknesses or failure points for the model.

Adversarial example explainability methods work by changing features to produce a false predic-
tion in the model. An adversarial model “perturbs” data instances to try to “deceive” the model into 
making false predictions. This approach is common with image recognition, for instance by changing 
pixels to have a model incorrectly label a picture of a dog as a car. While adversarial examples may 
popularly be used to find errors in image recognition models, the method can be applied across a 
range of use cases: adversarial examples might be identified by perturbing inputs in an underwriting 
model to try to change a prediction so that someone who should get credit access is denied or so 

140   Dandl & Molnar.
141   Solon Barocas et al., The Hidden Assumptions Behind Counterfactual Explanations and Principal Reasons, ACM Conference on Fairness, 

Accountability, and Transparency (FAT*) 5 (2020).
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that someone who is not creditworthy is approved. These examples can help identify weaknesses or 
unexpected behavior in machine learning models. In financial services, there is growing interest in the 
use of adversarial models for debiasing (see Section 5.3.1.2).

Analysis: Adversarial examples are especially useful for debugging complex machine learning 
models: they can highlight certain inputs that cause the model to make mistakes, or behave in 
unexpected ways. However, it can be computationally expensive and time-consuming to identify 
adversarial examples, especially for complex models with many features. In addition, these require 
information about actual outcomes, which is not always available. The resulting adversarial exam-
ples are also sometimes difficult to interpret and impractical to use. In computer vision, adversarial 
examples often have added noise or artifacts that would not be found in real images.142 Similarly, an 
adversarial example in a lending context that involves an applicant with 20 credit cards, no credit 
history, and an income of $2,000,000 may not reveal meaningful weaknesses in a model because 
such a case is highly unlikely in real life.

3.4.2.4 Sources of Explanation Errors
As discussed above in connection with individual techniques, several potential sources of errors 

in post hoc techniques may produce inaccurate, unstable, or unusable information. The risk of such 
errors is a central point in the debate over whether to limit use of machine learning in credit under-
writing to inherently interpretable models.

Oversimplification: Intuitively, many post hoc explainability methods operate by using a simpler 
surrogate model to understand the behavior of a more complex model. The surrogate is fitted to the 
predictions of the underlying machine model and then derives a simpler, more interpretable model 
that approximates those outputs. However, this approach does not necessarily mean that the surro-
gate will reliably identify the features or relationships that caused the underlying model’s predictions. 

More generally, the more the surrogate and the underlying models vary in terms of complexity, 
the more the explainability technique may simplify the underlying model’s operations and the bases 
for its predictions. At some point, this simplification may result in the explanation not capturing 
the full or true causes of the underlying model’s predictions. In extreme cases, the explanation may 
even provide misleading information about the bases for the model’s prediction. The effect of over-
simplification can be described as information loss or compression, although there is no standard 
approach to identifying or measuring how oversimplification affects individual implementations of 
explainability techniques.

This may occur in a variety of situations, including when a linear surrogate model is used to 
explain an underlying model with non-linear relationships. In this case, the resulting explanation may 
not capture the effects of the underlying model’s non-linear relationships and feature interactions 
in the underlying model. Oversimplification can also occur when building local surrogate (simple) 
models, as in LIME. The local surrogate may be a decent representation of the complex model for a 
single data point and its neighborhood, but this surrogate model may be very inaccurate for other 
data points or when used to provide a global explanation. 

Assumption of Feature Independence: Many post hoc explainability techniques, including PD 
plots and SHAP, assume that all input variables are independent, even though this assumption is false 
in almost every case and feature interactions contribute to the overall challenge of understanding 

142   For a survey of adversarial methods in machine learning, see Naveed Akhtar & Ajmal Mian, Threat of Adversarial Attacks on Deep Learning 
in Computer Vision: A Survey, 6 IEEE Access 14410-14430 (2018). One of the original papers on this topic is Ian J. Goodfellow et al., Explaining 
and Harnessing Adversarial Examples, published as a conference paper at the 2015 International Conference on Learning Representations, 
arXiv:1412.6572 (2015).
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and explaining machine learning models. This mismatch alone calls into serious question the utility of 
many post hoc techniques in applied settings. Many areas of machine learning and applied statistics 
also rely on the same assumption, but it can lead to particularly inconsistent and confusing results in 
connection with post hoc explainability techniques.

When multiple input features are strongly correlated or there are causal relationships, explanations 
may be inconsistent or inaccurate in unpredictable ways. For example, if two strongly-correlated fea-
tures are closely related to a model's output, then some explanation methods may arbitrarily over- or 
under-weight the importance of one of these variables. 

Convergence: Some post hoc explainability methods, including LIME and SHAP, often use sam-
pling to arrive at a result. For example, some versions of SHAP generate several samples by perturbing 
the input data, and calculating how these perturbations change the output. The resulting explanation 
can change as more samples are used, and most methods eventually “converge” when a sufficiently 
large number of samples are used. If the number of samples is too small, however, the resulting  
explanation can be inaccurate in unpredictable ways.

The number of samples required for convergence increases with both (a) the number and range 
of input variables, and (b) the model complexity, but model developers will not generally be able to 
know with certainty ex ante how many samples will be needed. 

User Error and Misuse of Explanations: Information produced by various post hoc explainabil-
ity techniques can be prone to misinterpretation or misuse based on the expertise and experience 
of the user of that information. Explanations that are designed to answer a specific question—what 
caused a particular drop in model accuracy?—may not satisfy a different inquiry—how do eco-
nomic downturns affect model accuracy? Further, the technical nature of information provided by 
explainability techniques increases not just the importance of having personnel with the relevant 
expertise reviewing this information, but incorporating interdisciplinary expertise into this process. 
For example, common explainability techniques cannot distinguish between causal effects and con-
founding variables that improperly suggest a relationship where none exists. In this scenario, a post 
hoc explainability method may identify a particular feature as very important to the model’s pre-
diction even though it serves as a proxy or confounding variable. For example, it may be common 
knowledge in financial services that the oldest tradeline is associated with a greater number of 
tradelines, and that applicants with fewer tradelines have a greater default risk. A machine learning 
model and post hoc explainability method may highlight the confounding variable, the oldest trade-
line, as important, when in fact the number of tradelines is the variable that leads to greater default 
risk. This mistake would be easier to pick up by a financial services expert than a data scientist who 
may lack the appropriate context to ensure proper review and challenge of model explanations.143 

In a broader sense, errors resulting from misuse of explanations can also occur when there is 
a mismatch between the purpose for which an explanation is needed and the technique used to 
derive it. When users rely on local explanations such as LIME or SHAP to describe global model 
behavior, differences in model output and quality across the input distribution are concealed 
and may undercut the accuracy of the explanation. For example, the average feature importance 
for a complex underwriting model may be very intuitive—such as lower credit utilization is on 
average associated with lower default risk. However, it is entirely possible for a machine learning 
model to use the opposite rule—low credit utilization is associated with high default risk—for  
certain applicants. An explainability technique that uses averages over the entire population 
would not return an explanation that reflects this counterintuitive behavior in circumstances 

143   The converse may also present problems and points to the need for diversified governance and oversight: a financial services expert may 
be prone to confirmation bias whereas a data scientist or other stakeholder may adhere more closely to specific findings in the data.
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where it applies. Another area for mismatch may be between a lender and a regulatory authority, 
as they use explainability techniques for different purposes. In this case, it may be important to 
use a technique that is designed to mitigate the misalignment in incentives between the lender 
and regulatory authority.144 

3.5 Emerging Model Diagnostic Tools
Given significant advances in the data science of explainability in recent years, a group of compa-

nies offering products that incorporate various post hoc explainability techniques has emerged to help 
firms manage AI and machine learning models. Some of these model diagnostic tools are designed to 
support models deployed in a variety of sectors and use cases. Others have been specifically designed 
to help lenders design, implement, and manage machine learning underwriting models. Some vendors 
have businesses focused on supporting model development teams, others primarily sell to risk and 
compliance units. 

Although individual lenders have different appetites for relying on vendor-provided tools to 
manage various aspects of machine learning models, the emergence of proprietary and open-source 
model diagnostic tools presents two important opportunities. First, these products can help stan-
dardize model management practices across the market. They may also make adoption of machine 
learning underwriting models more feasible for lenders that would otherwise struggle to build and 
maintain the relevant internal capabilities and infrastructure. 

These tools are designed to enable oversight of machine learning models across several dimen-
sions, including the general operation of models and managing regulatory compliance issues relevant 
to consumer credit. For example, many of the vendors offer support for managing model fairness and 
bias concerns. The tools can give model developers deeper insight into individual features’ predictive-
ness and are designed to let model developers manage accuracy-fairness tradeoffs in more nuanced 
ways than is possible with incumbent models.145 If validated and realized at scale, these developments 
have the potential to improve outcomes for both lenders and borrowers.

Although the characteristics of individual companies’ model diagnostic tools and the data science 
techniques embedded in them vary, emerging offerings in this market niche include the following 
capabilities: 

 »  Auto ML: Auto ML software guides users through the development of machine learning 
models. Such software typically offers a more automated model development process. 
These products are designed to help streamline model building processes that can be 
iterative and time consuming—such as selecting between machine learning types, hyper-
parameter tuning, feature engineering, and model assessment—based on input from the 
model developer responsible for creating the new model. Auto ML products are typically 
designed to help the model developer understand and document the tradeoffs between 
various design and implementation options by, for example, showing metrics for the per-
formance, stability, and fairness of various iterations of models. The diagnostics showing 
tradeoffs among different types of models and model specifications enable these plat-
forms to efficiently fit many different types of models in parallel on the same dataset 
and allow the developer to choose a single model for use or several models to be used in 
an ensemble. Auto ML can also be used by model developers to customize models and 

144  Blattner et al. (Jul. 2021).
145   Nicholas Schmidt & Bryce Stephens, An Introduction to Artificial Intelligence and Solutions to the Problems of Algorithmic Discrimination, 

73 Consumer Finance Law Quarterly Report 130-144 (2019). 
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tune models with proprietary data. Auto ML providers may not have direct insight into 
the nature or performance of the models developed using their platforms. 

 »  Model Diagnostics and Monitoring: Model diagnostic and monitoring platforms are 
designed to support machine learning models designed by the user. These tools typically 
provide and document insights of various kinds into the operation and performance of the 
models and enable model users to adjust aspects of the model’s operations and perfor-
mance based on these insights. The kinds of information produced can vary widely based 
on the product’s intended clientele, as well as the state of maturity of the product and 
provider. Some products in this category may focus on enabling oversight with respect 
to a single risk area—like fair lending—while others may aim to support a more broadly 
based set of requirements. These products typically enable users to set customized alerts 
to notify them when certain performance or risk thresholds have been exceeded. Firms 
using this approach often work closely with clients to support implementation of their 
analytics, train client personnel on how to use the software and interpret the information 
that it generates, and provide subject-matter expertise on critical interpretative issues 
and decisions once the platform is in use.

 »  Model Development: Some firms offer similar model diagnostics and monitoring capa-
bilities as described above, but do so as part of a package that includes developing their 
clients’ underwriting models. In this context, helping clients meet model validation and 
other risk management obligations can be essential to making them comfortable that they 
can rely on vendor-provided models and meet strategic and regulatory requirements.

Firms offering these products interact with their clients’ use in various ways, ranging from min-
imal support focused on implementation and use of the software to full consulting-style advisory 
support on how to interpret information produced by the tools and manage individual models.

Products currently available to lenders come in both open-source and proprietary forms. Many 
of the open-source tools, such as SHAP and built-in features of the XGBoost package, originate with 
established technology firms and are designed for use across economic sectors and use cases. Pro-
prietary tools can be provided by startup or de novo entrants, established technology companies, or 
analytics providers (such as credit bureaus and score providers). The business rationale and strategy 
of each provider of proprietary tools will shape key product characteristics, including their scope, 
methodology, specificity as to particular use case needs (such as regulatory compliance), and user 
interface design, among others. In some cases, proprietary model diagnostic tools leverage open-
source tools and use them with refinements to adapt them to users’ needs in specific use cases or 
to improve their operational efficiency. 

Model diagnostic tools can be used in various ways. A lender may opt to use vendor-provided 
model diagnostic tools directly as part of developing, monitoring, and operating machine learning 
underwriting models. Credit risk and data science teams may also use proprietary and open-source 
model diagnostic tools indirectly as an additional check on the transparency of internally developed 
models and on the performance and capabilities of explainability techniques their teams have devel-
oped as part of building their own models. Stakeholders focused on oversight—internally in firm risk 
and compliance functions and externally in regulatory examination teams—may also rely in time on 
these kinds of tools to understand and explain machine learning underwriting models. One likely axis 
for further refinement of model diagnostic tools is in their ability to support use by interdisciplinary 
stakeholders—including those in oversight functions who may have less credit risk and data science 
expertise than model developers and those who need the ability to generate and document indepen-
dent evaluations of various aspects of an underwriting model’s operation and performance.
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4.  MODELLING CONSIDERATIONS
This section addresses a range of considerations that individual model development teams con-

sider during the process of designing, implementing, and operating machine learning underwriting 
models, which is summarized in Box 4.1.2. These issues are not necessarily unique to machine learning 
models, but may take on new dimensions for lenders intent on using advanced analytical techniques 
to develop and operate underwriting models. The model development decisions considered here—
individually and collectively—inform the accuracy, fairness, and inclusiveness of resulting models. 
Many of them will also affect the transparency of the resulting underwriting models, in addition to 
the decisions discussed in Section 3. Section 5 provides a more extended consideration of bias-related 
issues that typically receive sustained attention across all stages of model development and use. 

4.1 Algorithm Selection 
Credit underwriting presents a classic classification problem: how can a lender determine whether 

an applicant is likely to repay the loan for which he or she has applied.146 Current automated under-
writing systems typically use logistic regression or logit models to estimate the probability of default 
because of their relative interpretability. However, lenders are increasingly interested in leveraging 
large, complex datasets and enhanced computational power to make credit decisions using machine 
learning underwriting models. This section considers the various kinds of machine learning models 
that were designed for classification problems like credit underwriting.

4.1.1 Types of Machine Learning Relevant to Underwriting and Other Credit Activities
Machine learning refers to the subset of artificial intelligence that gives “computers the ability 

to learn without being explicitly programmed.”147 Figure 4.1.1 provides a simple overview of the rela-
tionship of various types of artificial intelligence.

146   A classification problem generally refers to a situation in which a target variable is categorical or binary, in contrast to a regression 
problem, where the output is a continuous variable. In the context of credit underwriting, the process of sorting credit applicants into 
high- and low-risk buckets would be considered a classification problem. 

147   See Financial Stability Board; see also Samuel at 211-229; Mitchell (defining machine learning as the “field of study that gives computers 
the ability to learn without being explicitly programmed”); Jordan & Mitchell (defining machine learning as “the question of how to build 
computers that improve automatically through experience”).
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BOX 4.1.1   MACHINE LEARNING MODEL LIFECYCLE

Although the importance and intensity of individual 
steps can vary, machine learning models are generally 
developed in the following steps. These steps typically 
occur within model development teams and business 
units prior to any formal validation and oversight pro-
cesses that an institution might require, although how 
each occurs and is documented will be governed by 
the requirements of those processes:

 »  Algorithm Selection: The model builder picks 
a learning algorithm or algorithms based on 
the application for which the model is being 
developed and plans how to use constraints 
and post hoc methods to ensure appropriate 
transparency. Tradeoffs between algorithm 
types include the amount of data required, 
the types of relationships they can look 
for, and the ease of providing appropriate 
explanations of how the model works and  
for specific results.

 »  Data Selection and Preparation: Preparing 
data is a critical and time-consuming stage of 
developing a machine learning model. Choices 
that developers make at this stage can have 
broad effects on the performance, fairness, 
and inclusiveness of models. Decisions taken 
to clean data may also affect the reliability 
of information expressed by post hoc 
explainability techniques.

 »  Training: Model training is the period in which 
an algorithm analyzes a dataset to identify 
thresholds and relationships relevant to 
prediction of the target or output variable. 
Compared to traditional statistical modelling 
techniques, the machine learning algorithm, 
rather than a human coder, determines the 
structure of the resulting model.

 »  Validation and testing: After training, 
predictive models evaluate hold-out data—
datasets other than the one on which it 
was trained, often including out-of-time 
samples—to evaluate its reliability and 
robustness. Test data are typically data that 

neither the data scientist nor model have 
seen. This step is particularly important in 
building machine learning models given the 
risk of overfitting—the risk that the machine 
learning algorithm fits the predictive model 
too narrowly to the specific characteristics of 
limited training data, which may increase the 
fragility of the model’s performance.

 »  Tuning: Machine learning models are then 
“tuned” in order to maximize performance 
based on validation and testing results. 
Tuning, validation, and testing may occur in 
several iterations during model development. 
Tuning is a critical step to reduce overfitting 
problems. As discussed above, regularization 
is one technique used to tune a model—here, 
an additional term is added to constrain the 
model so that specific coefficients cannot 
take extreme values. Hyperparameters 
can also be used to adjust models and are 
set before training begins either by a data 
scientist or auto ML software. Their values 
can be changed during tuning.

 »  Shadow deployment: Firms typically run 
the developmental model parallel to models 
that are already in production. This permits 
direct comparison to incumbent models on 
performance, stability, and other metrics 
relevant to the use case and refinement 
of model design, implementation, and risk 
management plans.

In managing the development and use of machine 
learning models, users will monitor model perfor-
mance, data conditions, and other factors to decide 
when to re-train and update the model. Although 
machine learning confers certain efficiencies on the 
updating process, this process typically occurs offline 
and is subject to oversight processes similar to those 
for development of a new underwriting model.a 

a    Bank Policy Institute, Response to Agencies’ Request for Inform-
ation and Comment on Financial Institutions’ Use of Artificial 
Intelligence, Including Machine Learning 17 (Jun. 25, 2021).



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
56

Section 4: Modelling Considerations

FIGURE 4.1.1   FORMS OF AI AND MACHINE LEARNING
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Among the forms of machine learning, two types are relevant to the development of underwriting 
models: supervised learning and unsupervised learning.148 Additional types of artificial intelligence and 
machine learning may be used in other credit-related activities, such as the use of natural language 
processing in processing borrower inquiries and complaints. (See Box 4.1.2)

4.1.1.1  Supervised Learning 
Supervised learning refers to models that are trained using both input variables and a target (out-

come) variable. The purpose of supervised machine learning models is to learn to predict the target 
variable from input variables. Supervised learning models are almost always used when lenders are 
estimating the probability of default by a potential borrower, and are commonly used for credit scor-
ing and stress testing.149 For example in credit underwriting, a lender might use a borrower’s attributes, 
such as the percentage of available credit used by the borrower and employment length (the input 
variables), to predict whether or not they will repay a loan (the target variable). Information on past 
borrowers, including their repayment behavior, can be used to “train” a supervised machine learning 
model that predicts the repayment behavior of new borrowers. Once a new application is made for 
a loan, supervised learning models can then predict the likelihood of default by analyzing the appli-
cant’s information in the context of past borrowers’ repayment behavior and outcomes. In practice, 
this means underwriting models depend almost entirely on historical lending data, which as discussed 
further in Section 5 can enhance challenges related to fairness and bias in assessing accurately the 
credit risk of individuals in groups that have had limited prior access to credit. 

148   A third type—reinforcement learning—is excluded here because it has little application to underwriting models. In reinforcement learn-
ing, a machine learning model or agent interacts with a dynamic environment by taking actions and receiving rewards. Reinforcement 
learning is commonly used in robotics and game-playing. This includes learning to make a series of decisions correctly—such as playing 
and winning games.

149   Jie Chen, Deep Insights into Explainability and Interpretability of Machine Learning Algorithms and Applications to Risk Management, 
Presentation at the 2019 Joint Statistical Meetings, slide 2 (Jul. 29, 2019). 
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BOX 4.1.2   OTHER USES OF MACHINE LEARNING IN LENDING

While this report focuses primarily on the use of 
machine learning underwriting models, lenders are 
using various forms of Al and machine learning in other 
aspects of their operations that can have important 
implications for consumers in accessing and using 
credit. For example, while the use of AI and machine 
learning for marketing analyses is distinct from under-
writing, this use case may influence underwriting by 
affirmatively shaping who becomes an applicant for 
credit or providing insight into relevant segments to 
be considered in credit decisions.

In addition to underwriting models, AI and machine 
learning can be used in the following ways throughout 
the lifecycle of credit products:

Marketing: Al and machine learning can help lend-
ers identify potential customers for their products and 
services and support the creation of prescreened offers 
of credita that reflect differing levels of fit with under-
writing criteria. In this context, unsupervised learning 
is more common than it is in credit risk assessment, as 
it relies on diverse forms of unstructured, digital data. 

Fraud: Fraud screening has become both more 
important and more complex in the era of digital 
transactions and application channels. Fraud screen-
ing is a well-established use case for both complex 
Al models like neural networks and varied types of 
digital data. Here, complex models are a natural fit for 
high-speed, data- intensive, iterative processes used 
to identify individual risks of illicit activity based on 
rapidly changing patterns within massive volumes of 
streaming data flows.b These models can be used both 
to determine which credit applications are evaluated 
in full underwriting processes and to evaluate individ-
ual transactions involving open-end credit, such as 
screening individual credit card transactions. Concerns 
about model transparency may not be as acute for 
fraud screening as in underwriting decisions because 
applications or transactions flagged as high risk are 
often subject to further review before exposing firms 
to financial or other forms of liability, such as declined 
transactions.

Loan Servicing: Lenders can use machine learning to 
help identify borrowers who are most likely to falter in 
repayment, to focus particular collection activities on 
those most likely and able to repay, and to determine 
appropriate loan terms when a modification or work-
out is needed. Since many of these activities carry 
significant financial and regulatory exposure, lenders 
may be more conservative about deploying machine 

learning for them than in some other lending-related 
contexts. However, in collections and recovery, activi-
ties such as using combinations of supervised learning, 
natural language processing, and text mining for sen-
timent analysis may raise significantly different risks 
and model transparency needs than applications that 
involve making decisions about loan originations or 
workout terms. 

Portfolio Management: Lenders use machine  
learning to assess the performance and positioning of 
current credit portfolios as market and operating con-
ditions change. The ability of machine learning models  
to detect non-linear relationships as well as their ability  
to be retrained relatively swiftly once additional data 
are available, may enhance their utility in this role when 
economic conditions shift dramatically, such as in the 
COVID-19 pandemic. These efforts can inform lenders’ 
decisions to adjust their credit policies going forward, 
especially with respect to score cutoffs and line assign-
ments, when changes in strategy or macroeconomic 
conditions affect their credit risk and capital positioning. 

Customer Relationship Management: Firms are 
expanding their use of advanced analytics to handle 
and respond to customer communications in a variety 
of contexts. Analytical techniques like natural language 
processing may be useful for scanning large volumes 
of calls and enabling chatbot digital interfaces. When 
assessed in large volumes, these customer contacts 
may provide useful information about patterns and 
practices relevant to refinement of customer acquisi-
tion strategies and adjustments to credit practices. 

Regulatory Compliance: Firms may also seek to 
enhance risk management and compliance processes 
using AI and machine learning. For example, firms have 
begun to use advanced analytical techniques to iden-
tify patterns within consumer complaints and conduct 
root cause analysis. Regulators are using AI and machine 
learning technology for similar purposes.c 

a    In general, a prescreened offer of credit refers to a solicitation 
from a lender that invites the recipient to apply for a loan 
based on a preliminary review of his or her credit bureau 
information. See Consumer Financial Protection Bureau, What 
Is a Prescreened Credit Card Offer? (2017); Federal Trade 
Commission, Prescreened Credit and Insurance Offers (2021). 

b    See, e.g., Sushmito Ghosh & Douglas L. Reilly, Credit Card Fraud 
Detection with a Neural-Network, The Twenty-Seventh Hawaii 
International Conference on System Sciences (1994).

c    See Consumer Financial Protection Bureau, 2020 Consumer 
Response Annual Report 5-6 (2021); Jo Ann Barefoot, A Regtech 
Manifesto: Redesigning Financial Regulation for the Digital Age, 
Alliance for Innovative Regulation (2020).          
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4.1.1.2 Unsupervised Learning 
Unsupervised learning refers to models that detect patterns or clusters in a dataset without using 

a target variable. Data without a target variable are referred to as unlabeled. To use the same exam-
ple, the dataset for an unsupervised learning model will consist of features, which may include credit 
utilization and employment length, but will not include information on loan repayment behavior. 
Although unsupervised learning models are not used directly to predict the probability of default, 
they can be used to find similarities or associations between the features and characteristics of indi-
viduals included in a dataset and to label cases of interest for a supervised model. Such clustering 
of borrowers is widely used for customer segmentation in marketing and in models used for image 
recognition. In lending, it is sometimes used to optimize credit lines.

As described above, deep learning refers to a class of machine learning models that emulate 
biological neural networks to identify complex patterns in data and extract higher-level informa-
tion between the input data, latent features generated by the model from the input variables, and 
target variables.150 Deep learning can be used in both supervised and unsupervised models.151 The 
generation of these insights often depends on the transformation of input data through various 
layers or levels involving the generation of latent features. These models can analyze various large 
datasets and identify complicated and detailed patterns, which, in turn, can capture deeper insights 
and connections between the features and outcomes in the datasets. Deep learning has gained 
prominence in recent years, as these models can be highly predictive and improved computing 
power has continued to reduce processing times for these models. Deep learning has been used in 
natural language processing, computer vision, and semantic learning, among other applications, but 
as discussed further below use of unconstrained neural networks in credit underwriting is relatively 
limited due to the complexity of explaining the operation of these models and tradeoffs in perfor-
mance that result from constraints to improve model transparency.152 

4.1.2 Types of Machine Learning Models Used in Credit Underwriting
This section describes the types of machine learning models that are most relevant to credit 

underwriting. At the outset, all of the models discussed below can exhibit varying degrees of model 
complexity and transparency, depending on specific choices that lenders make when developing 
underwriting models as discussed in Section 3 with regard to model constraints and in Section 4.2 
with regard to data inputs. Factors that affect these modelling choices include data availability; 
systems infrastructure; firm practice, policy requirements, and operational constraints; and regula-
tory considerations.

4.1.2.1 Forms of Supervised Learning Used in Credit Underwriting

4.1.2.1.1 Tree-Based Models 
Among machine learning models, tree-based models are often used in credit underwriting 

because they offer lenders an attractive balance of predictive power and operational efficiency.153 

150  Radoslaw M. Cichy & Daniel Kaiser, Deep Neural Networks as Scientific Models, 23 Trends in Cognitive Sciences 305-317 (2019).
151  Deep learning models can also be used with reinforcement learning techniques.
152   Majid Bazarbash, FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk, International Monetary Fund 

Working Paper (2019). 
153   A 2016 study of data from six large U.S. banks found that decision tree and random forest models that considered tradeline data, credit 

bureau information, and macroeconomic indicators each outperformed a more traditional logistic regression model when forecasting 
credit card delinquencies. See Butaru et al. 
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Tree-based models come in various forms and degrees of complexity—some tree-based ensemble 
methods may be as complex as multiple-layer neural networks—but all are built using traditional 
“if-then” logic to break the estimation of the target variable into a series of discrete, binary analyses. 
Three types of tree-based models have particular relevance for credit underwriting: decision trees, 
random forests, and gradient-boosted decision trees (including XGBoost).

Decision Trees
A decision tree is an algorithm that uses a hierarchical structure to estimate a target variable—

such as whether an applicant should be accepted or rejected for credit because he or she has a high 
or low risk of default—with a series of discrete, binary rules. These smaller decisions are represented 
in a chain: each step of the chain is called a node, which corresponds to a simple “if-then” decision. 
The result of each decision at a node leads to a new node, and so on. Eventually, one of these steps 
leads to a leaf node, which gives an estimate of the target variable. Collectively, this set of component 
decisions in all of the branches of a tree will include all possible outcomes in a hierarchical structure.

A simplified decision tree for credit underwriting illustrates this approach:

FIGURE 4.1.2.1.1   DECISION TREE FOR A CREDIT UNDERWRITING MODEL
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In Figure 4.1.2.1.1, a decision tree model is used to predict which applicant is likely to pay back 
a loan to inform a firm’s decision to approve or decline an application for credit. The decision tree 
starts with a credit score—any applicant with a credit score of 700 or higher is assigned to the 
branch on the right of the diagram, which then looks at the applicant’s credit utilization rate. A 
threshold of 80% is determined by the model to be the cutoff, where any applicant with a credit 
utilization rate of under 80% will be approved for credit. However, the analysis for an applicant 
with a credit score of below 700 will be assigned to the branch on the left that starts by looking at 
whether the applicant has had a bankruptcy. If so, the applicant will be declined for credit. If the 
applicant has not filed for bankruptcy, the decision tree then looks at the credit utilization rate of 
the applicant, which again has a cutoff of 80%. Anyone with utilization below 80% is approved for 
credit, and those with utilization at or above 80% are declined. 

In practice, underwriting models will use a tree with many more branches. This allows more 
nuanced consideration of data relevant to prediction of default risk, but there can be tradeoffs as 
complexity and depth increase. The depth of a tree refers to the number of splits a tree can make 
before predicting the outcome/target variable. A tree with more branches and greater depth has 
leaves that are more pure, which means that all the data points on the leaves are from the same 
class (for instance, a “pure” leaf would include all data points from either high risk or low risk of 
default). In general, the greater the number of branches in the model the greater the risk of overfit-
ting, which can undercut the model’s accuracy. Ideally, an increase in the number of branches should 
be supported by an increase in the training data so that the risk of overfitting can be reduced. 

Decision trees can be prone to various problems. First, they may be highly dependent on specific 
attributes analyzed in training and therefore pose a risk of overfitting. If a model overfits and the 
training and deployment data differ significantly, the decision tree is unlikely to make accurate pre-
dictions. Second, decision trees may be sensitive and inconsistent because optimal decisions are made 
locally at each node. But a decision that is optimal from the perspective of a single node may not 
produce a tree that delivers coherent or stable predictions. Third, decision trees can be biased if some 
groups dominate in the sample. This is particularly true in credit underwriting, as underrepresented 
populations may be inaccurately assessed due to lack of credit history. 

Random Forest
A random forest is an ensemble machine learning method in which multiple decision trees are 

combined into one predictive model to decrease variance and bias and/or to improve accuracy and 
predictions. There are two techniques that are used in random forests to make them less biased and 
more accurate than individual decision trees: 

 »  Bagging or Bootstrap Aggregation: Bagging or bootstrap aggregation refers to the pro-
cess of generating randomly drawn subsamples from a training dataset with replacement,154 
training individual decision tree models on each of these subsamples, and then calculating 
the average predictions from each model to yield the final prediction. 

 »  Decorrelation: Decorrelation ensures that only a subset of features is chosen at random 
when the decision to split is made at each node. The advantage of this randomization is 
that each feature is used for modelling the outcome and a single dominant feature does 
not drive the results, which makes the trees “decorrelated,” resulting in lower variance.155 In 

154   Replacement is a statistical technique that is designed to improve the independence of randomly drawn samples. It means that when a 
sample A is drawn randomly from a population, A is put back/replaced in the population before generating another sample, B, from the 
population. Therefore, these two sample values, A and B, are independent and their covariance is zero.

155   Lower variance means that a small change in the training data does not result in large changes to the model predictions.
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terms of the number of features selected for decorrelation, generally a square root of the 
number of trees is used.156 The number of features in a sample will determine how long this 
process takes. 

Developers will also tune certain hyperparameters, such as the number of nodes allowed in the 
model,157 to increase the accuracy of the resulting model. Although the tuning may generate high 
accuracy in a model, the tuning process requires long processing times and high computing power.

Because individual and particularly deep decision trees tend to overfit to training data, random 
forests can generally yield more accurate models. A random forest deals with these issues by train-
ing several small decision trees, and training each tree on a random subsample of the training data. 
Often these subsamples use only a small number of features, and the resulting trees are small; this 
prevents overfitting. Combining all of these simple trees into a decision forest allows the model to 
capture more nuanced effects in the data, while also preventing overfitting. Decorrelation of fea-
tures helps to ensure that certain features do not dominate the results. This is critical in decision 
trees generally, but has special relevance in the context of credit underwriting since indicators of 
creditworthiness taken from historical data may disproportionately drive the probability of default if 
decorrelation is not used. In this context, a random forest model can assess the various features and 
subset features that may be more specific to certain classes/groups and ensure that the predictions 
of default probabilities are driven by all features in a dataset instead of the dominant feature(s). This 
way, a random forest may improve the inclusiveness of lending decisions, although more research is 
needed to explore this potential.

A random forest can also be more complicated and harder to explain than individual decision 
trees due to the higher number of features included when multiple trees are generated and the need 
to average over many trees. However, feature importance explainability techniques can be used to 
make random forest models more interpretable. 

Gradient-Boosted Decision Trees
Gradient-boosted decision trees are another ensemble machine learning model that uses mul-

tiple decision trees. Gradient-boosted decision tree models estimate a first tree and then estimate 
a second tree based on the prediction error of the first tree as the target variable (unlike random 
forest models where prediction errors are not utilized to generate subsequent trees). Subsequent 
trees in gradient-boosted models are also built based on the prediction errors of the prior models. 

Unlike a random forest, the final prediction of a gradient-boosted decision tree model is the 
weighted sum of predictions of all trees rather than the average. The weighting ensures that gradient- 
boosted decision trees lead to lower prediction error rates and better predictive power compared 
to a random forest or individual decision trees. Similar to a random forest, developers can calculate 
feature importance for gradient-boosted decision tree models, which makes it easier to understand 
the predictions and results generated using the models. 

Extreme Gradient Boosting (XGBoost) is an open-source package available in Python and R 
that is becoming popular for the development of credit underwriting models and other financial 
services applications. XGBoost uses the gradient-boosting framework and optimizes tree-based 

156   See Bazarbash.
157   For each type of machine learning model, there is a set of hyperparameters that are optimized in order to help find the minimum loss 

or maximum accuracy for the model. The hyperparameters can be optimized using various approaches, such as random search or grid 
search. It is important for underwriting model developers to tune and optimize model hyperparameters as they can help to determine 
more accurate loan default predictions. 
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methods using various techniques such as L1 and L2 regularization, which lead to better predictive 
performance and speed (see Section 5.3.1.2). Several enhancements to the algorithms and systems 
have improved the accuracy and operational efficiency of XGBoost models and made them popular 
for underwriting. XGBoost includes tree pruning, a process controlled through a hyperparameter to 
remove relatively irrelevant or unimportant information from the trees and manage risks related 
to overfitting. Further, XGBoost can recognize areas where data sparsity may affect the model’s 
accuracy and handle missing data better by imputing values. In addition, XGBoost includes paral-
lelization, which sorts the data in a way that uses CPU power more efficiently, which speeds up the 
training process. 

Further extensions of gradient-boosted decision trees (GBDTs) are also used in credit underwrit-
ing. Stochastic gradient boosting improves upon gradient-boosted decision trees by using a bagging 
concept similar to what is used in random forests by drawing random subsamples to generate each 
new tree based on the prediction errors of the previous tree.158 This makes stochastic gradient boost-
ing similar to random forest models, unlike gradient-boosted decision trees where the entire training 
data is used for classification. Open-source packages, such as CatBoost, support gradient-boosted 
decision trees and focus on categorical features in the data.159 In practice, categorical features are 
manually converted to numbers in gradient boosting. However, this algorithm deals with categorical 
features during training, which is more efficient. Another advantage of the algorithm is that it uses 
a new method for calculating leaf values when selecting the tree structure, which reduces overfit-
ting. Both these methods result in the algorithm to outperform other gradient-boosted trees such as 
GBDTs and XGBoost.160

4.1.2.1.2 Support Vector Machines 
Although tree-based models are more common in credit underwriting, support vector machines 

(SVMs) can also be used to predict probability of default. A support vector machine is a machine 
learning tool that generates a separating line between observations in a dataset that belong to 
different classes. Support vector machines are used for classification problems such as facial and 
handwriting recognition and underwriting.161 In the case of credit underwriting, a support vector 
machine can be used to separate applicants based on predicted “default” or “not default” outcomes. 

Figure 4.1.2.1.2 below shows a support vector machine for a credit underwriting model. The dark 
black line in the middle shows the best separating line to split the feature space. The best separating 
line or boundary is calculated by maximizing the distance between the line and closest points in each 
class, which is the margin. The blue lines are the support vectors and the distance between them 
is the margin. As the figure shows, the support vector machine has generated a line and separated 
the applicants, where red stars refer to applicants who yield “default” outcomes and blue circles are 
applicants who yield “not default” outcomes. It is also worth noting that the support vector machine 
produces some overlaps, and observations are on the other side of the separating line. Thus, while 
this particular support vector machine has separated the most homogenous observations on either 
side of the separating line, it has actually misclassified some individual observations.

158   Jerome H. Friedman, Stochastic Gradient Boosting, 38 Computational Statistics & Data Analysis 367-378 (2002).
159   In the context of credit underwriting, an example of a categorical feature may be repayment status on a particular tradeline, which can 

be different categories, such as “paid on time”, “delayed by one month”, or “delayed by three months.” These are not numerical features 
such as the number of past defaults or bank card balances, which mean that these categories need to be converted to numbers before 
they are used in a model.

160   Anna Veronika Dorogush et al., CatBoost: Gradient Boosting with Categorical Features Support, arXiv:1810.11363 (2018).
161   Sheng-Tun Li et al., The Evaluation of Consumer Loans Using Support Vector Machines, 30 Expert Systems with Applications 772-782 (2006).
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FIGURE 4.1.2.1.2   SVM FOR A CREDIT UNDERWRITING MODEL









































In terms of performance, research has shown that SVMs perform well on smaller datasets and are 
unlikely to overfit, as they use a subset of the training dataset to evaluate the separating line and 
support vectors.162 This also means that they require less computational power. More recently, how-
ever, SVMs have gotten less attention in the context of credit underwriting due to the emergence of 
other methods that deliver a better balance of performance gains, interpretability, and operational 
efficiency.163

4.1.2.1.3 Neural Networks 

Artificial neural networks can produce powerful predictions, as they learn non-linear relationships 
between features and the target variable through several inner layers.164 The first layer consists of 
the features of the input data, which are used to generate latent features that make up the nodes 
in the second layer. The evaluation is conducted on a weighted sum of inputs and is based on an 
activation function, which combines several features into a single number (usually between 0 and 
1). This process repeats until the final layer, where predictions for the target variable are generated. 
The layers between the first and final layers are often referred to as hidden layers. They are com-
posed of latent features generated by the model which are used to predict the target variable. This 
structure can be particularly helpful to identify non-linear relationships between input features and 
target variable, which boost the predictiveness of the models compared to other machine learning 
techniques.

Neural networks have been deployed in various fields such as computer vision, speech recog-
nition, and natural language processing, among others. In banks and fintechs, neural networks are 
already used extensively in fraud analytics, where the accuracy and higher predictiveness of these 
models allow financial institutions to better understand and detect fraud patterns in extremely large 
volumes of transaction data. Similarly, neural networks have potential to be very effective in credit 
underwriting, especially where a lender aims to use large-scale, diverse datasets for which neural 

162   Hafiz A. Alaka et al., Systematic Review of Bankruptcy Prediction Models: Towards a Framework for Tool Selection, 94 Expert Systems 
with Applications 164-184 (2018); Li et al.

163   R. Y. Goh & L. S. Lee, Credit Scoring: A Review on Support Vector Machines and Metaheuristic Approaches, 2019 Advances in Operations 
Research art. 1974794 (2019).

164   Neural networks can be used for supervised, unsupervised, and reinforcement learning. In this report, neural networks are primarily con-
sidered in applications using supervised learning given its prominence in underwriting. 
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networks’ capacity to recognize complicated patterns is particularly valuable. The non-linear nature 
of these models may be particularly valuable after an economic shock like the onset of the pandemic 
because they are better able to identify and assess dynamic relationships between features and the 
target variable. 

However, this increased predictiveness can come at some cost. In general, neural networks can 
be computationally taxing, although the operational constraints of running these models have 
eased. They can also be difficult to optimize and explain. For example, even a simple two-level 
neural network involving nine input features with five nodes in the first layer and five latent 
features in the second layer will require a total of 100 parameters to be estimated and then syn-
thesized to explain the functioning of the model. In contrast, most regression equations using the 
same nine input features would require only 10 coefficients to explain the model.

Another potential disadvantage is that neural networks with more than a handful of layers 
can be difficult to understand, and this complexity is a particular challenge in the context of credit 
underwriting. Furthermore, these deep neural networks have a huge number of parameters and 
tend to overfit to the training data. Limiting the number of layers in the network can improve 
the model’s transparency and prevent overfitting, but may come with equally significant perfor-
mance tradeoffs. For example, a logistic regression can be represented as a neural network with a 
single layer of nodes—in other words, certain simple neural networks can be equivalent to logistic 
regression. Neural networks can also be made more interpretable by using a piecewise linear acti-
vation function,165 such as Rectified Linear Unit (ReLU), that creates a neural network consisting of 
many locally-linear models that are each interpretable in the sense that the individual models use 
a linear combination of attributes to calculate an output. Post hoc explainability techniques may 
also make neural networks sufficiently transparent for use in contexts like credit underwriting. As 
discussed above in Section 3, while neural networks involve complicated algorithms, techniques 
such as integrated gradients and SHAP for deep learning models are designed to make these mod-
els more transparent and help users understand the relative importance of individual features to 
models’ predictions. 

4.1.2.2 Forms of Unsupervised Learning Used in Credit Underwriting
Although supervised learning models discussed above are dominant in credit underwriting, certain  

unsupervised learning techniques, such as cluster analysis, may also be used for other credit-related 
activities.

4.1.2.2.1 Cluster Analysis (Segmentation)
While this technique is not as commonly used as supervised learning models, unsupervised learn-

ing models can be used to generate clusters of borrowers, which may be useful to separate borrowers 
of different types. These may not be helpful to classify customers directly on their probability of 
default as part of an underwriting model, but can be used to segment potential applicants and exist-
ing borrowers for marketing purposes and for evaluating credit line amounts. For instance, the models 
can be structured to predict an individual’s likeness to existing borrowers who did not default, were 
loyal, or met other criteria of value to the lender. In addition, cluster analysis is particularly useful 
when ground truth data about actual lending outcomes is not available, as unsupervised learning can 
be used on unlabeled data.

165   Activation functions are functions that introduce non-linearity and help a neural network learn complex patterns in the data. The activa-
tion function transforms a neuron, which contains a set of inputs and associated weights. The output of the neuron is then sent as input 
to the neurons of another layer, which repeats the same process (weighted sum of the input and transformation with activation function) 
until the final layer which predicts the target variable.
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K-Means Clustering 
The most commonly used cluster analysis method is K-means clustering, which is very commonly 

used to segment customers in various markets, to determine customer loyalty, and to create targeted 
marketing and offers. The objective of this method is to derive k number of clusters from n obser-
vations. Each observation in the dataset is allocated to a cluster with the nearest mean or centroid, 
where the centroid refers to the mean value of all the data points in the cluster. Initially, a random 
number of k clusters is chosen, and their centroids are calculated. The data points are then assigned 
to the closest centroid, where the closest is calculated based on the distance between the data point 
and the cluster. Once the data points are assigned to a cluster, the cluster means are recalculated 
and every observation is checked to determine if it is closer to another cluster. This process continues 
until there is no change to the centroids and cluster assignments are no longer updating.166 Once the 
k clusters have been fixed, new data points can be classified by assigning them to the nearest cluster.

For example, K-means clustering can be very effective in understanding credit card spending 
patterns of customers, which financial institutions can then use to define customer segments and 
devise marketing strategies. For instance, a bank can use K-means clustering to look at customers’ 
credit card spending, such as amounts spent per month, individual purchase amounts, and where 
customers use their cards. The bank might use this analysis to offer higher credit lines to customers 
who regularly spend high amounts and also pay their balances on time or to offer cards provid-
ing rewards for spending at grocery stores to customers who would find them a good fit for their 
spending habits. 

4.2 Data Selection and Preparation
The ability to assess large, diverse datasets is one significant motivation for lenders’ interest in 

using machine learning underwriting models. In other sectors such as retail and media, the ability 
of AI systems to track and use broader forms of information, including data on individuals’ online 
behavior, to substantially improve predictive power has transformed markets, business models, and 
consumer behavior.167 In financial services, these changes have also been noticeable in marketing and 
customer engagement strategies and efforts to detect fraud and other illicit behavior.168 However, 
lenders have generally been more reticent to expand underwriting data beyond credit bureau data 
and data about existing customers’ past dealings with the lender due to regulatory concerns espe-
cially with respect to fair lending compliance, operational constraints in accessing alternative data, 
and securitization requirements that favor use of standardized data. Even if individual lenders decide 
to adopt machine learning underwriting models simply to better assess traditional data sources, the 
transition to machine learning underwriting models presents an opportunity to consider what data 
can and should be used for underwriting. Further, the choice of what data will be used to develop 
an underwriting model can have significant implications for the model’s complexity as well as the 
accuracy, fairness, and inclusiveness of lending decisions.

166   To verify that the clusters are correctly determined, the sum of the squared error (SSE) is determined after the centroids converge. The 
objective of K-means clustering is to minimize SSE, where SSE is defined as the sum of the square of the Euclidean distances of each point 
to its closest centroid.

167   A 2020 survey of nearly 7,000 marketers globally reported a 186% increase in AI adoption since 2018 for marketing purposes such as 
customer personalization and data collection. Salesforce, State of Marketing Report 6, 18 (2020). See also Parrish, Alternative Data and 
Advanced Analytics.

168   See, e.g., Parrish, Impact Report (reporting that 55% of respondents employ AI in both the marketing and fraud detection stages of the 
loan life cycle, and 25% plan to do so in the future for both categories).
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4.2.1 Data Selection
This section provides an overview of the different types of data available for use in credit under-

writing and the form in which such data are delivered.

4.2.1.1 Type
The type of data used for credit underwriting plays a significant role in determining who is 

approved for credit.169 This subsection provides an overview of the various types of data that can be 
used in credit underwriting and their implications for both predictiveness and inclusion (see Box 2.1). 

 »  Credit Information: Traditionally, credit applications are approved largely based on credit 
histories and scores from major credit bureaus, such as Experian, Equifax, and TransUnion, 
and from smaller providers that focus on specialty finance records. The bureaus typically 
provide applicants’ personal information; public records such as bankruptcies; tradeline 
data which reflect that person’s repayment record mainly for secured and unsecured loans; 
inquiries made on the applicant’s credit files; and balance information (including available 
balance for credit cards).170 This type of data is usually standardized and relatively clean,171 
which reduces the risk of noise in predictions where the data are available. Credit bureau 
data are used in a variety of ways during originating and securitizing consumer loans, and 
are available in sufficient amounts to generate credit scores from the most widely used 
models for approximately 80% of adults in the United States.172 

Some research suggests that machine learning models that evaluate only credit bureau infor-
mation can improve credit risk prediction for applicants, including those who cannot be 
scored under some existing models.173 However, other research has raised concerns about 
the potential predictiveness, inclusion, and fairness effects of relying solely on traditional 
data for credit risk assessment. For instance, the remaining 20% of consumers who cannot 
be scored using the most widely used models include disproportionate numbers of minori-
ties, recent immigrants, and students.174 One recent academic study found significantly more 
signal noise—that is, random, unpredictable errors that make it hard to reliably predict credit 
risk—in scores calculated based on traditional data for minority groups and consumers with 
marred credit records.175 Another study found that machine learning models’ ability to map 
more closely to traditional mortgage data sources could lead to marginal improvements 

169   See FinRegLab, The Use of Cash-Flow Data in Underwriting Credit: Empirical Research Findings (2019); Leonardo Gambacorta et al., How 
Do Machine Learning and Non-Traditional Data Affect Credit Scoring? New Evidence from a Chinese Fintech Firm, BIS Working Paper 
No. 834 (2019).

170   See Carroll & Rehmani.
171   A 2012 Federal Trade Commission study found that 21% of participants had errors in their credit reports, 13% had errors that affected their 

credit scores, and 5% were able to obtain corrections that were so large that they changed credit risk tiers. However, no comprehensive 
update has been performed since the Consumer Financial Protection Bureau began examining credit reporting agencies for compliance 
with relevant federal laws and other market developments occurred that may have affected particular sources of errors. See Cheryl R. 
Cooper & Darryl E. Getter, Consumer Credit Reporting, Credit Bureaus, Credit Scoring, and Related Policy Issues, Congressional Research 
Service (updated Oct. 15, 2020); Federal Trade Commission, Report to Congress under Section 319 of the Fair and Accurate Credit Transac-
tions Act of 2003 i to vi, 57-64 (2012).

172   Federal Deposit Insurance Corporation, 2017 National Survey of Unbanked and Underbanked Households at 10.
173   VantageScore reports that its use of machine learning to develop scorecard models for consumers who are not scorable under some 

third-party models because their credit histories have not had an update in the prior six months resulted in a performance improvement 
of 16.6% for bank card originations and 12.5% improvement for auto loan originations. See VantageScore.

174  See Blattner & Nelson.
175   Id.; Wei Li et al., The Lasting Impact of Foreclosures and Negative Public Records, Urban Institute Housing Policy Finance Center 9 (2016).
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in approval rates but increase pricing disparities to the extent that certain populations are  
predicted to be somewhat higher risk than under conventional models.176

 »  Alternative Financial Data: Alternative financial data describes a variety of non-lending  
financial activities and can be extracted relatively easily from sources such as bank or pre-
paid accounts. Depending on the source and scope of data, this information may actually  
contain more granular and timely information about applicants’ financial position than 
credit bureau information and can provide a more complete picture of an applicant’s ability 
and willingness to repay a loan.177 There is growing evidence that such data can be used to 
overcome the shortcomings of traditional credit information in providing credit to thin- or 
no-file applicants. Recent research shows that using alternative financial data such as cash-
flow information from bank account records and other data sources can increase models’ 
predictive power as well as improve access to credit for historically underserved groups.178 
In addition, information from rental, utility, and telecom records may also be useful for 
assessing creditworthiness, even among some populations that lack bank accounts or pre-
paid cards.179 

 »  Behavioral Insights in Alternative Financial Data: Some sources of alternative finan-
cial data provide detailed information about consumer behavior, such as where and when 
they shop and in some circumstances what they buy. Some of this information may be 
relevant to credit risk assessment. For example, segregating transactions into discretionary 
purchases and tracking how an individual manages those against fluctuations in income 
may indicate how well an applicant manages financial decisions. Similarly, the time of day 
at which an applicant sought a loan or the temporal relationship between the application 
and obligations coming due may be predictive of credit risk. These kinds of behavioral 
insights embedded in transaction histories also raise fairness, fair lending, and privacy 
concerns, particularly if consumers are not aware that such information will affect under-
writing decisions. For example, a lender could decide that an individual spends too much 
on lattes or bicycle jerseys given their income and assets and the potential obligation of 
loan payments. Similarly, lenders often decide that the channel by which an application 
is received—whether for example the application was received via the lender's app, in a 
branch, or through an aggregator’s website—cannot be fairly used in underwriting even 
though it can be indicative of credit risk. These decisions reflect an understanding that 
emphasizing originations channels in credit risk assessment can be unfair since the lender 
has chosen to accept applications across various channels and may also introduce fair 
lending risk where the source of applications correlates with protected class characteristics.

 »  Non-Financial Alternative Data: Non-financial alternative data refers broadly to data 
about a person’s activities that are not financial in nature or derived from financial data. 
Such data are mostly unstructured, as discussed further below. Social media data are one 
common form of non-financial data, but search histories, educational attainment, and 
mobile phone recharging habits are other examples of non-financial alternative data that 

176   See Fuster et al. (machine learning models using conventional data in the mortgage context concluded that such models would likely lead 
to modest improvements in application approvals among Black and Hispanic applicants, but would increase pricing differentials between 
different demographic groups due to many minority applicants being evaluated as higher risk than under conventional approaches).

177   A 2010 study found that a machine learning model constructed using both credit bureau and transaction data from a large consumer bank 
improved the predictiveness of credit card delinquencies and defaults and would have resulted in the firm reducing losses by between 
6% and 25% through adjusting credit lines based on the new model’s predictions. See Khandani et al. 

178   FinRegLab, The Use of Cash-Flow Data in Underwriting Credit: Empirical Research Findings.
179   Pew Research Center, Demographics of Mobile Device Ownership and Adoption in the United States (Apr. 7, 2021).
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have been studied or considered for underwriting purposes in the U.S. or other countries.180 
Much of this data is behavioral and raise heightened concerns about reliability and fairness 
when incorporated in underwriting analyses to the extent that the data correlate but have 
no clear causal or intuitive links to creditworthiness. The introduction of this data also gives 
rise to data quality concerns if the data are available for only certain groups or if institutions 
lack experience working with new types of data.181 Non-financial alternative credit data 
also often raise similar concerns about privacy, correlation with protected class, and other 
issues as articulated above in discussing behavioral data derived from alternative financial 
information.182 

This type of data is not commonly used in the U.S. for underwriting, although some nonbank 
financial institutions consider educational factors and digital footprint information in addi-
tion to more traditional measures of creditworthiness. Outside the U.S., non-financial data 
are more commonly used for customers in rural areas or low-income populations who are 
unlikely to have previously taken loans. In such cases, digital footprint data such as browser 
used, calls made, and consideration of an applicant’s social connectedness (such as number 
of connections an individual has on social media) are used in machine learning models to 
identify features that correlate strongly with lower probability of default. Researchers have 
found that this approach allows lenders to extend first-time credit to consumers who lack 
sufficient history to be evaluated using traditional credit information.183

4.2.1.2 Form
There are various forms of available data which differ in terms of the type, storage, and flexibility 

of access and use. The form of data has a significant impact on how often they are used and the 
purposes they are used for. 

 »  Structured Data: Structured data refers to tabular data, which are stored in a database in 
columns and rows. These are typically the easiest to access and are most readily available 
to use. They are stored in relational databases and have relational keys, which make it eas-
ier to link the tables and combine or merge them as required. In credit underwriting, these 
can refer to credit report data, which usually are stored in a database within a company 
and then used for various purposes, and other forms of financial data, such as transaction 
account information in certain circumstances.184 This type of data is most commonly avail-
able and used for approving credit applications. Systematically stored data are less likely to 
contain missing values, which enhances the reliability of structured data and improves the 
likely predictive accuracy of models trained on this data.

180   Sumit Agarwal et al., Financial Inclusion and Alternate Credit Scoring: Role of Big Data and Machine Learning in Fintech, Indian School of 
Business (2021) (evaluating whether non-financial alternative data can improve financial inclusion, focusing in India); Asli Demirgüç-Kunt 
et al., The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution, World Bank Group (2018) (report on the 
financial environment around the world, including the use of traditional and non-traditional data).

181   See generally Ostmann & Dorobantu.
182   The use of larger datasets that include alternative behavioral and non-financial data in credit underwriting may exacerbate issues related 

to data accuracy, representativeness, and bias more generally, in addition to the concerns outlined above. See Federal Trade Commission, 
Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues (2016). 

183   See Agarwal et al.; see also Tobias Berg et al., On the Rise of the FinTechs: Credit Scoring Using Digital Footprints, 33 Rev. of Fin. Studies 
2845–2897 (2020). 

184   Transaction account or cash-flow data may vary in format based on how it is obtained. A firm using transaction account data for accounts 
it holds will in all likelihood be able to access this data in structured formats. However, transaction account data acquired via screen 
scraping and APIs may require processing and structuring before delivery to the acquirer. FinRegLab, Cash-Flow Market Context & Policy 
Analysis at 46-49.
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 »  Semi-Structured Data: Semi-structured data refer to data which are not stored in rela-
tional databases but have some structure which make them easier to process and use 
for analysis. This includes information obtained via screen scraping or otherwise extracted 
from webpages using Extensible Markup Language (XML)/Resource Description Format 
(RDF). Key-value stores in these documents give the data sufficient structure for use in 
various kinds of models, albeit with additional cleaning work prior to processing. Using 
semi-structured data to complement the information provided by structured data is a com-
mon approach. For example, lenders may combine cash-flow data scraped from banking 
platforms with credit bureau records in an underwriting analysis to obtain a more holistic 
view of the applicant’s financial position.

 »  Unstructured Data: Unstructured data include information stored in text formats, audio 
files, video files, and images, which includes most social media data. As a result, these 
data are neither organized in any consistent way nor stored in a database until they are 
extracted from their native formats using text queries and natural language processing. As 
described above, non-financial data sources are often unstructured and are rarely used for 
credit underwriting in the United States, given serious reliability, privacy, and fairness con-
cerns associated with these data. However, some sources of digital footprint data—such as 
the number of social media connections an applicant has, patterns within those networks 
of connections, number of phone calls made and received and the duration of the phone 
calls—have been used in other countries and have shown to be predictive for applicants 
who have thin credit histories.185 Sentiment analysis, which is widely used in marketing and 
is of interest in growing digital debt collection efforts, relies on unstructured data such as 
social media activity.

4.2.2 Data Preparation
Preparing or cleaning data is a critical and time-consuming stage of developing a machine learn-

ing model. Choices that developers make in this stage can have broad effects on the performance, 
fairness, and inclusiveness of models. Decisions taken to clean data may also affect the reliability of 
information expressed by post hoc explainability techniques. 

4.2.2.1 Missing Values
Deciding how to handle missing or unavailable features or explanatory variables for specific 

individuals in a dataset is among the most common tasks in data cleaning. One method of handling 
missing data is to impute the missing input with the mean or median value of that input across the 
entire dataset. However, in cases in which the actual value is substantially different than the mean 
or median, both the accuracy of the model’s prediction and the accuracy of explanations about the 
model’s performance will be affected. To the extent that the explanation provided in the context 
of an adverse action is inaccurate, for example, that can have a direct bearing on regulatory com-
pliance matters. For example, suppose a loan applicant had a missing count of repaid loans in their 
credit bureau record, but the modelling method imputed the missing value with an average from 
the larger sample. If the model imputes one repaid loan, but an applicant actually had five repaid 
loans and the model learned that having one corresponded to higher credit risk, then the model 
may predict that this applicant poses higher than actual default risk based on the imputed missing 
value. This may also lead to generation of an inaccurate reason code on an adverse action notice. 
More generally, missing values of features can be indicative of certain characteristics pertaining 

185   See Agarwal et al.
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to an individual. For instance, missing values for a variable that determines whether an individual 
owns or does not own a credit card can indicate a higher or lower risk profile. In this case, missing 
values can be directly used to assess the probability of default.

Machine learning models may be better able than logistic regression to assess datasets with 
missing values. Frequently, developers of logistic regression models have to choose between impu-
tation methods that introduce both inaccuracy and regulatory risk and dropping a feature that is 
missing too often in a dataset, even if that makes the resulting model less predictive. However, 
XGBoost and other machine learning approaches can learn the risk pattern associated with miss-
ing values explicitly, so that they can make a risk assessment based on all the variables, including 
whether a particular value is missing or not. This may be a significant factor that makes machine 
learning models more accurate than incumbent models and be particularly beneficial for those 
deemed unscorable under common credit scoring approaches. 

4.2.2.2 Coarse Classing
Model development teams frequently use sophisticated statistical methods, like coarse classing, 

to prepare data for use in developing underwriting models. Coarse classing is a method of data 
transformation where subcategories of a particular kind of variable are combined where they have 
similar probabilities of default. For example, the categorical variable “residential status” may include 
the following responses: “own,” “rent,” and “with family.” A method called weight of evidence or WoE 
can help lenders identify whether the groups associated with each possible response exhibit similar 
probabilities of default or number of defaults. Any subcategories showing similar probabilities of 
default can then be combined in the model, for instance by collapsing the categories into “own” and 
“not own” if the default risks between “rent” and “with family” prove to have similar default risk 
levels. Streamlining similar categories in this way reduces spurious correlations in the data, which 
can reduce noise in the data and improve the accuracy of predictions.

WoE can also convert continuous variables such as age into binned groupings. For example, 
credit scores can be separated into a set number of bins or groups (500 < credit score <= 600, 600 
< credit score <= 700, and so on), and then the WoE for each of these groups can be calculated. 
Similar to the example of residential status, creating credit score bands that exhibit similar default 
characteristics can improve the model’s predictive accuracy. 

4.3 Modelling Considerations
In addition to the data considerations discussed above, developers will typically consider the 

following issues when designing an underwriting model:

4.3.1 Reject Inference
A lender typically develops underwriting models using historical datasets that include information 

about individuals who have applied for credit and their performance in particular loans. But lenders 
are not always able to obtain performance data concerning applicants who they rejected or who 
declined their offers of credit, especially if those applicants obtained credit elsewhere. Lack of infor-
mation about whether applicants predicted to default actually defaulted on loans can bias the model 
and make validation more difficult. 

To address this issue, lenders may opt to model reject inference by credit bureau proxy or sta-
tistically imputing data on loan performance for rejected applicants had they been approved. The 



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
71

Section 4: Modelling Considerations

technique involves using data for approved applicants to impute predicted values on individuals 
who were denied credit or, in other words, determine if rejected applicants would have been likely 
to repay their loans based on data on individuals for whom the lender has default labels. These pre-
dicted values for rejected applicants are then added to historical information for approved applicants 
to train an underwriting model. 

There are several reject inference methods available that lenders can use to address this source 
of bias: 

 »  Simple Augmentation: Simple augmentation involves assigning rejected applicants with a 
cutoff, such that any individual below a threshold is in the “default” class and any individual 
above a threshold is in the “non-default” class. After the class is assigned to the rejected 
applicants, both the accepted and rejected samples are included in the final training data, 
which is then fitted to develop a model. 

 »  Fuzzy Parceling: Fuzzy parceling is another method used for addressing bias from reject 
inference. Here, a logistic regression model is fitted using information on applicants who 
were approved. That model estimates the default probability for all applicants who were 
denied credit previously. Fuzzy parceling assumes that each rejected applicant has both 
labels y = 1 and y = 0 (or equivalently “non-default” and “default” classes), with weights 
given by the fitted model using only data on applicants who were accepted. Finally, a new 
weighted logistic regression model is developed using data on both accepted and rejected 
applicants,186 which is the credit underwriting model used on future credit applicants.

4.3.2 Credit Scorecards
Credit or underwriting scorecards are widely used across asset classes and types of lenders to 

develop models for credit underwriting. In a credit scorecard, the model converts various char-
acteristics of borrowers—such as debt-to-income ratios, utilization patterns, or default history—
into points. These points are combined into a total score that rank orders an applicant’s likelihood 
of default. In current practice, lenders often use a system of multiple scorecards—also known 
as segmented scorecards—within their underwriting processes, with each scorecard targeted to 
a distinct and unique subsegment of the population, such as thin- or no-file borrowers or those 
with marred credit histories. Segmented scorecards enable each scorecard to be tailored to the 
unique characteristics and risk patterns of specific subsegments of the population.

One way to build a scorecard is to bin features into different groups to distinguish between those 
who are likely to repay the loan (“goods”) and those who are not (“bads”) using the same weight of 
evidence described above in the discussion of coarse classing. WoE is calculated by taking the natu-
ral log of the distribution of “goods” divided by the distribution of “bads.” For example, for a feature 
that is continuous, the data can be binned into 10 groups and the number of goods and bads are 
calculated within each group to calculate the WoE values for each bin. This process is repeated for 
all features and the WoE values are then fitted to a logistic regression model instead of the original 
features in the training data. Finally, the regression coefficients and the WoE values are multiplied 
to derive the points, which make up the total score for an applicant. A more advanced way to 
express the score is linear programming based optimization, which is utilized to assign weights to 
bins that optimize a specified objective function. Once this model is trained, it can be used on test 
and deployment sets to determine the total score and a consumer’s likelihood of default risk and to 
decide whether to approve or reject individual applications for credit. 

186   Ha-Thu Nguyen, Reject Inference in Application Scorecards: Evidence from France, Economix Working Paper 2016-10 (2016).
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The form of the scorecard formula is a generalized additive model which allows non-linear rela-
tionships and interactions to be accurately captured and results in highly interpretable models. It 
is also possible to put constraints on the score weights to restrict the score formula, for example, 
to follow a monotonic relationship between certain characteristics and the resulting score. These 
constraints allow domain knowledge to be imputed within the score weights assignment to ensure 
robust and palatable models are obtained when the score formula is produced.

One advantage of credit scorecards, especially when using machine learning to generate the interim 
analyses to which points are awarded, is that they are an approach to data transformation that reduces 
noise in the data and that offers built-in transparency about the basis for credit decisions. If an appli-
cant for credit is unsuccessful, the scorecard approach makes relatively straightforward the process of 
identifying the categories for which his or her score was low relative to the maximum available and 
ranking each such category by its contribution to the aggregate score or by its distance to the mean.
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5.  FAIRNESS AND BIAS
News stories routinely recount that without thoughtful design and oversight, problematic biases 

can be built into machine learning systems and amplify the effects of discrimination in a range 
of everyday decisions and activities.187 In the credit context, the transition to machine learning 
underwriting models has intensified attention on a range of questions related to fair lending risks 
and standards, similar to questions that have been raised about earlier generations of automated 
models. It has also intensified concern about machine learning’s ability to replicate or even amplify 
historical biases in lending.188 For example, if models are developed based on data that are biased 
because they are inaccurate, incomplete, or unrepresentative for certain groups, the models are 
likely to replicate or even amplify those biases particularly for machine learning models because 
of their sensitivity to training data. Such flaws can result in a model that makes predictions that 
inappropriately over- or underestimate default risk as to underrepresented groups or cannot make 
a prediction for certain populations altogether for lack of information. 

Further, the identification and management of variables that may proxy for protected class status 
under both disparate treatment and disparate impact theories of discrimination can be significantly 
more complicated when lenders use machine learning underwriting models (see Section 2.3.2). Being 
able to identify and mitigate causes of discriminatory lending patterns requires a high degree of 
transparency into how the models work and make predictions. Particularly where models are more 
complex (see Section 3.2.2), lenders and regulators may need new tools and face new limitations in 
efforts to diagnose bias. Machine learning models may also effectively reverse-engineer protected 
class status from correlations in data, even though consideration of such status is prohibited.189 

187   See, e.g., Steve Lohr, Facial Recognition Is Accurate, If You’re a White Guy, N.Y. Times (Feb. 9, 2018) (citing a study of AI facial recognition sys-
tems that discovered error rates up to 35% higher for Black women compared to White men, largely due to the dominance of White males 
in the training dataset); Ed Yong, A Popular Algorithm Is No Better at Predicting Crimes than Random People, The Atlantic (Jan. 17, 2018) 
(reporting that the widely-used COMPAS tool, an algorithm used to predict violent crime, reproduced the bias against Black offenders); 
Starre Vartan, Racial Bias Found in a Major Health Care Risk Algorithm, Scientific American (Oct. 24, 2019) (describing a popular algorithm 
for determining medical need that relied on a faulty metric of healthcare spending, which differs significantly for Black populations, and 
therefore underestimated the needs of Black patients). 

188   Automated underwriting models are generally recognized as reducing the risk of disparate treatment because they decrease the role of 
personal interactions and decision-making in credit risk assessment and apply a consistent analysis across applicants based on relatively 
standardized information. See, e.g., Board of Governors of the Federal Reserve System, Report to Congress on Credit Scoring and Its 
Effects on the Availability and Affordability of Credit at S-2, S-3 to S-4, O-4 to O-6, 32-49. However, over time stakeholders have become 
increasingly concerned about the ways that data gaps and other weaknesses continue to create systemic barriers for applicants of color 
and other disadvantaged populations. See, e.g., Lisa Rice & Deidre Swesnik, Discriminatory Effects of Credit Scoring on Communities of 
Color, 46 Suffolk L. Rev. 935 (2013); National Consumer Law Center, Past Imperfect: How Credit Scores and Other Analytics “Bake In” and 
Perpetuate Past Discrimination (2016).

189   For overviews of some of the issues raised by both data and machine learning models, see Evans; Federal Trade Commission, Big Data: A 
Tool for Inclusion or Exclusion? Understanding the Issues 27-32; Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 Cal. L. 
Rev. 671-732 (2016); Talia Gillis, The Input Fallacy, Minn. L. Rev. (2021), forthcoming 2022; Talia Gillis & Jann Spiess, Big Data and Discrimina-
tion, 86 U. Chicago L. Rev. 459-487 (2019); Deborah Hellman, Measuring Algorithmic Fairness, 108 Va. L. Rev. 811 (2020).
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The term bias can be used in a variety of ways. Statisticians and data scientists often use it to 
describe systematic differences between a model’s predictions and actual outcomes when trying to 
understand and correct the causes of those deviations. Others use bias to refer to discrepancies in 
treatment of different demographic groups, especially for those groups which have been subject to 
discrimination or injustice of other forms. This kind of bias is the subject of fair lending requirements 
and other forms of anti-discrimination law and regulation. This section is primarily focused on causes 
of bias with respect to demographic groups, especially those which have been historically under-
served by the financial system. However, as part of considering the causes and potential corrections 
for biases with respect to protected classes, this section does describe forms of statistical bias—such 
as representation or historical bias—that may result in fair lending or other discrimination problems. 

This section addresses a range of issues related to bias and discrimination in the context of 
algorithmic lending, with a particular focus on how the data science community thinks about the 
sources of bias and techniques for measuring and mitigating bias issues in various machine learn-
ing contexts. Along with the options for enhancing model transparency and other critical model 
construction decisions as discussed above, these approaches to managing bias concerns may be 
relevant to financial services stakeholders as they consider how traditional approaches to managing 
compliance with anti-discrimination laws and broader notions of fairness may need to be adapted 
for machine learning underwriting models. The section begins by setting out the ways in which 
data and models can each be the source of bias and then considers options for measuring and  
reducing bias. 

5.1 Sources of Bias
Various forms of bias—including but not limited to legally defined forms of discrimination such 

as disparate treatment and disparate impact—may be introduced into an underwriting model in a 
variety of ways throughout the process of designing, implementing, and using a machine learning 
model. Understanding the sources of bias can help lenders and policymakers identify and mitigate 
bias and discrimination in individual models and define appropriate safeguards throughout the model 
lifecycle.190 However, there is no standardized taxonomy of statistical biases191 and weaknesses in 
data, model design, and governance/personnel can create feedback loops and magnification effects 
that make it difficult and in some cases maybe impossible to pinpoint a single cause of bias or dis-
crimination.192 In practice, biases can be introduced at various points in developing and using machine 
learning models:

190   Andrew Burt et al., Beyond Explainability: A Practical Guide to Managing Risk in Machine Learning Models, Immuta and Future of Privacy 
Forum (2018); Nicol Turner Lee et al., Algorithmic Bias Detection and Mitigation: Best Practices and Policies to Reduce Consumer Harms, 
Brookings Institute (2019).

191   Barocas & Selbst at 677-693.
192   See, e.g., Betsy Anne Williams et al., How Algorithms Discriminate Based on Data They Lack: Challenges, Solutions, and Policy Implications, 

8 J. of Information Policy 78-115 (2018); Aylin Caliskan et al., Semantics Derived Automatically from Language Corpora Contain Human-Like 
Biases, 356 Science 183-186 (2017); see also Sara Hooker, Opinion, Moving Beyond “Algorithmic Bias Is a Data Problem”, Patterns (Apr. 9, 
2021) (arguing that the prevalent belief that a model only reflects existing bias in the dataset is misguided, and that model design choices 
can independently contribute to algorithmic bias).
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FIGURE 5.1   BIAS IN THE DATA, ALGORITHM, AND USER INTERACTION FEEDBACK LOOP193
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Figure 5.1 demonstrates how the cyclical nature of the model development processes can affect 
various types of statistical bias in machine learning models. For example, in the data selection 
and preparation phase of the cycle, the use of existing data may perpetuate practices or biases 
that existed historically (historical bias) or may produce models that do not generalize or predict 
well across all groups because they lacked sufficient information about particular subpopulations 
(representation bias). In the algorithm phase of the cycle, the training algorithm may learn biases 
during model development. These biases reflect the choice of the algorithms utilized in the model. 
Measurement bias is another type of bias that arises in the algorithm phase of the cycle when a 
mismeasured feature is utilized during model development, resulting in bias as to certain groups for 
whom the mismeasured feature is material to the model’s prediction. In addition, there may also 
be user interaction effects where user behavior may differ in certain contexts or in use of various 
datasets.194 Further, the feedback loop emphasizes that predictions produced by a particular gen-
eration of machine learning model can affect future data that are subsequently used for training 
subsequent generations of models. 

Section 5.1.1 and Section 5.1.2 explore more deeply how bias can be introduced when models are 
developed and in data selection and preparation. Both sources of bias can be important for under-
writing model development, although many discussions focus disproportionately on data-related 
concerns. Across both these sources of bias, the role of personnel and governance processes are 
important. Lack of representativeness among personnel who design, operate, and govern models can 
increase the likelihood of problems related to bias and discrimination in machine learning models and 
weaken organizations’ ability to recognize and respond to problems in all phases of a model’s devel-
opment and use.195

193   This figure was adapted from Ninareh Mehrabi et al., A Survey on Bias and Fairness in Machine Learning, arXiv:1908.09635v2 (2019); 
Jongbin Jung et al., Omitted and Included Variable Bias in Tests for Disparate Impact, arXiv:1809.05651v3 (2019).

194   For more details, see Mehrabi et al. (highlighting user interactions with certain forms of statistical biases which exist in the model devel-
opment cycle). 

195   Kenneth Holstein et al., Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need?, 2019 ACM CHI Conference 
on Human Factors in Computing Systems, arXiv:1812.05239v2 (2019); Turner Lee et al.; Judith Spitz, Why Tech Executives Must Embrace 
Diversity as Their First Line of Defense Against the Business Impacts of Algorithmic Bias, Forbes (Jul. 1, 2021) (suggesting three steps to 
combating algorithmic bias: establish diverse, cross-functional data inspection teams; establish diverse, cross-functional ethics and fairness 
review boards; and keep up with organizations at the forefront of AI ethics).
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5.1.1 Data as a Source of Bias
Models use historical data of one kind or another to make predictions about a future event or 

behavior. If that data are unrepresentative, inaccurate, or contains mistakes,196 the model’s predictions 
will be less reliable. Biases originating in data affect regression models but their effects may be 
magnified in the context of machine learning underwriting models. As discussed in Section 4.2.1.1, in 
underwriting and credit scoring, data used to estimate which applicants are more likely to default are 
primarily derived from prior lending activity. As a result, data used to evaluate current applicants may 
not be able to assess with sufficient accuracy the credit risk posed by people who have not been able 
to obtain credit or have had to rely on products whose structure and terms increased their likelihood 
of default.197 

The remainder of this section considers in greater depth the types of biases that can affect data 
used to develop underwriting models.198

Representation Bias: Representation bias occurs when defining and sampling a population to 
support development of a model. It reflects divergence in characteristics, behaviors, and outcomes 
for individuals in the dataset used to develop the model and the data that the model will encounter 
when in use. Under-representation in the training data can mean that the model’s predictions do 
not generalize well once the model is in use. Its causes include sampling methods that only reach a 
narrow population (including past patterns described in the discussion of historical bias below) and 
changes between the population of interest and the overall sample that are not captured in data 
used for model development.

Historical Bias: Historical bias describes the effect that occurs when the data available from 
current or past practice is accurate and correctly sampled, but skewed in ways that means the 
model may produce outcomes that are not desirable from broader perspectives. For example, an 
algorithm designed to select which applicants for an engineering job merit interviews may success-
fully replicate the historical results from prior periods during which humans reviewed applications, 
but be nonetheless undesirable for institutions that want to include more women and minorities 
than they have historically.199 In the context of lending decisions, historical bias addresses the poten-
tial for underwriting models to replicate past discrimination as to underrepresented groups.

Omitted Variable Bias: Omitted variable bias occurs when a model’s target variable is affected 
by an explanatory variable that is not included in the model.200 For example, a machine learning 
model can be built to determine whether a house will sell or not. In this model, several relevant vari-
ables can be included such as house price, number of bedrooms and bathrooms, and size measured 
in square feet. However, if the model fails to include a relevant variable such as whether other new 
houses are being built in the area, then the model may not be able to predict the likelihood of a sale 
accurately for all the houses. In this case, for example, the model may be able to predict if a house 
will sell in areas where no new houses are being built with high accuracy but have low accuracy for 
areas where new houses are being built.

Selection Bias: In credit underwriting, it is common to encounter selection bias, where outcomes 
for certain individuals are not available. For instance, when an applicant is rejected for a loan, it is 
not possible to know the actual outcomes for whether they would default, which means that the 

196   Barocas & Selbst at 684-687; Gillis at 17-22.
197   Mark MacCarthy, Fairness in Algorithmic Decision-Making, Brookings Institute (2019); Schmidt & Stephens at 131, 143.
198   Harini Suresh & John V. Guttag, A Framework for Understanding Sources of Harm Throughout the Machine Learning Lifecycle 6-7,  

arXiv:1901.10002v4 (2021).
199   James Manyika et al., What Do We Do About the Biases in Al?, Harvard Bus. Rev. (Oct. 25, 2019).
200   Mehrabi et al. at 7.
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data that the models are trained on comprise only applicants who are accepted. This is referred to as 
selection bias, as the models are biased and trained on individuals who are accepted for loans but are 
uninformed on rejected applicants. As discussed in Section 4.3.1, reject inference is a common tech-
nique to impute labels for the reject applicants, particularly in credit underwriting, which augment 
the data used for training, and can help to mitigate the selection bias issue.

5.1.2 Models as a Source of Bias
Even where data are accurate and complete, automated systems can reproduce past patterns of 

discrimination or introduce new forms of discrimination due to the way a model is designed, imple-
mented, and used.201 For example, models may be designed in ways that reflect assumptions about 
economic structures or business models with embedded inequalities. For example, an algorithm used 
to determine care for hospital patients systematically allocated Black patients less care than similarly 
situated White patients due to the assumption that annual accrued cost of care would be a good 
indicator of health needs.202 Similar issues may result where algorithms are designed to optimize 
results across larger groups rather than distinct or differentiated subpopulations.203 Decisions about 
optimization goals—such as overall predictiveness or privacy—can also have differential effects on 
certain groups. Further as discussed below in Section 5.2, decisions made about how to measure 
algorithmic fairness can also complicate these model design considerations.

The following list highlights key recent findings about the effect of certain model design and 
development decisions on the fairness of the resulting model, though some of them are focused 
on large neural networks deployed in non-financial settings that are designed to run quickly and to 
minimize energy consumption. More research is needed to determine whether the findings extend 
to the kinds of models most relevant to lending:

 »  Training Rate: Research suggests that observations in a training set that are difficult to 
learn—because they are underrepresented or present analytical complexity—are learned 
later in the model training process.204 As a result, decisions to train models faster may affect 
how well the resulting model performs as to observations that are harder to learn. In the 
context of lending, this may mean that individuals who are hard to score or are generally 
less represented in historical lending data may be disproportionately affected by decisions 
about how much time is allotted for model training and the speed at which the algorithm 
analyzes training data.

 »  Model Pruning: In work focused on neural networks used in contexts like digital recom-
mender systems, online advertising, and computer vision, efforts to design the models so 
that they run quickly and use as little energy as possible may disproportionately affect the 
accuracy of predictions with regard to groups that are underrepresented in the dataset. For 
example, pruning connections between nodes in a neural network by removing connections 

201   Schmidt & Stephens; Turner Lee et al.; BLDS, LLC et al.
202   Heidi Ledford, Millions of Black People Affected by Racial Bias in Health-Care Algorithms, Nature (Oct. 24, 2019) (finding that risk 

scoring in software widely used to allocate care in U.S. hospitals consistently underestimated medical needs of Black patients when 
compared to equally sick white patients); see also Manyika et al. (considering algorithm used to select candidates for medical school 
interviews that was designed to replicate past practice with 90% accuracy).

203   For instance, a number of advocates, policymakers, and other stakeholders have raised concerns that the use of educational information 
such as the school attended or the major or program of study in credit underwriting may exacerbate existing inequality in both educa-
tional and credit access for students and borrowers of color who attend or have attended minority serving institutions. See NAACP Legal 
Defense and Education Fund & Student Borrower Protection Center, LDF and Student Borrower Protection Center Announce Fair Lending 
Testing Agreement with Upstart Network (Dec. 2020); Relman Colfax PLLC, Fair Lending Monitorship of Upstart Network’s Lending 
Model: Initial Report of the Independent Monitor (2021).

204   See Jiang et al.; Chirag Agarwal & Sara Hooker, Estimating Example Difficulty Using Variance of Gradients, arXiv:2008.11600v2 (2020).
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with weights below a certain threshold may not affect overall model accuracy.205 But recent 
research has shown that such pruning decisions can disproportionately affect underrepre-
sented groups in the dataset.206 More research is needed to extend this finding to the kinds 
of data and neural networks being used for lending, but it is possible that pruning neural 
networks may affect prediction accuracy more for minority borrowers than white ones or 
for thin or no-file applicants. 

 »  Privacy-Enhancing Technologies: A model designed to deliver differential privacy207 by 
preventing sensitive or “private” information from entering the training process can add 
statistical noise in ways that affect model accuracy.208 In at least one study considering an 
algorithm designed for commercial lending, these effects were shown to disproportionately 
affect minorities.209

The following are types of statistical biases that affect how underwriting models learn and use 
training data:210

Aggregation Bias: Aggregation bias reflects the use of a generalized model for subpopulations 
that exhibit different distributions as to characteristics relevant to the model’s prediction—such as 
debt-to-income ratio or credit line utilization in an underwriting model. This may result in a model 
that is more accurate in making predictions for a dominant population in the sample than it is for 
particular subgroups. For example, in the development of medications, testing results for women of 
child-bearing age may be unduly affected by other populations, since clinical trials tend to include 
fewer participants in that subpopulation.

Measurement Bias: Measurement bias arises when a variable in the model is mismeasured. For 
instance, if the measurement of aggregate income includes income from only one job and assumes 
that it is a full-time job, then the income of individuals who have more than one job will be mis-
measured in ways that can bias the accuracy of the model’s predictions for that group.211 This may 
mean that the model leaves out important factors or that the selection or creation of features or 
labels introduces group- or input-dependent noise that affects model performance. It can be caused 
by measurement processes that vary among groups or by an oversimplified approach to defining 
the model’s task.212

***

These biases can all result in faulty predictions and give rise to fair lending, discrimination, and 
inclusion issues in various circumstances. The shift to machine learning from incumbent underwriting 

205   A recent review paper finds that compressing deep neural networks via pruning often has very little impact on overall accuracy. See Davis 
Blalock et al., What Is the State of Neural Network Pruning?, Proceedings of Machine Learning and Systems, arXiv:2003.03033 (2020).

206   Two recent papers find that pruning can disproportionately impact underrepresented groups in the training data and can amplify existing 
biases. Sara Hooker et al., What Do Compressed Deep Neural Networks Forget? arXiv:1911.05248v2 (2020); Sara Hooker et al., Characteris-
ing Bias in Compressed Models, arXiv:2010.03058v2 (2020).

207   Differential privacy is achieved where adding a single data point (or individual) to a dataset will not significantly change the output or 
reveal sensitive information about the individual. Techniques to increase differential privacy often add noise to a dataset.

208   Ziheng Jiang et al., Characterizing Structural Regularities of Labeled Data in Overparameterized Models, Proceedings of the 38th Inter-
national Conference on Machine Learning, 139 Proceedings of Machine Learning Research, arXiv:2002.03206v3 (2021).

209   Matthew Jagielski et al., Differentially Private Fair Lending, Proceedings of the 36th Annual Conference on Machine Learning, 97 Proceed-
ings of Machine Learning Research (2019).

210   Suresh & Guttag at 5-6.
211   Gillis at 20-22.
212   For example, Street Bump, a smartphone app for Boston residents to report road issues, uses a data collection process that may reflect 

the uneven distribution of smartphone ownership across certain populations of the city rather than identifying the true geographical 
areas in need of road repairs, which could further disadvantage poorer, more marginalized communities. See Barocas & Selbst at 684-685. 
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models may amplify the importance of some of these risks, but it also presents an opportunity for 
practitioners and policymakers to rethink how underwriting models are developed and how new 
technologies and data can be used to help overcome, rather than further entrench, past patterns of 
bias and discrimination. The balance of the section discusses options for measuring and mitigating 
various forms of bias. 

5.2 Measuring Fairness
How fairness is defined and measured is a threshold question that shapes efforts to identify 

and mitigate risks related to bias throughout model development and use. Regulatory oversight 
in financial services applies well-established definitions to assess fairness in the form of disparate 
treatment and disparate impact requirements (see Section 2.3.2). However, the broader commu-
nity of machine learning researchers and practitioners have also devoted substantial resources to 
this question in recent years, producing more than 20 mathematical approaches to measuring the 
fairness of algorithmic models. 

This work has attracted varying degrees of attention among financial services stakeholders due 
to several factors, including the sheer number of competing metrics, the technical nature of the 
source material, and the fact that there is little publicly-available research on how different mea-
sures might affect the fairness of underwriting models.213 Nevertheless, industry and other lending 
stakeholders are drawing on this broader debate about defining and measuring the fairness of AI 
and machine learning models to consider two important questions:

 »  Can any of these metrics improve evaluations of compliance with traditional fair  
lending requirements?

 »  Do any of these alternative fairness metrics facilitate assessments of additional aspects  
of fairness that are not captured by current fair lending requirements? 

Highlighting conceptual differences between the proposed definitions of fairness is a useful 
starting point to begin answering these questions. Toward that end, this section assesses a subset of 
metrics from the set of more than 20 possible approaches to measuring fairness that have generally 
garnered more attention in the academic literature and are more practical for use in the context of 
consumer credit given data available to lenders.214 For each measure of fairness considered in depth 
here, this section describes the metric and its mathematical notation and assesses illustrative exam-
ples, data requirements, and tradeoffs related to using each measure.

Across the individual options, several broader considerations are likely to shape stakeholders’ 
views about whether and how particular metrics could be useful. The first is that data availability 
may affect lenders’ and regulators’ ability to apply particular fairness tests at particular stages—for 
instance, during early stages of model development, while a model is operating in real time, or as 
part of periodic assessments of model performance. These metrics require some combination of the 
following primary forms of data:

213   Most research on measuring the fairness of algorithmic models focuses on articulating definitions for these metrics. See Sahil Verma & 
Julia Rubin, Fairness Definitions Explained, FairWare’18: Proceedings of the IEEE/ACM International Workshop on Software Fairness 1-7 
(2018). However, some more recent scholarship in data science and other fields has addressed the implications of proposed metrics in 
various contexts. See Hellman; Dana Pessach & Erez Shmueli, Algorithmic Fairness, arXiv:2001.09784v1 (2020).

214   The chart provided in Appendix C provides an overview of more than 20 approaches identified in academic literature and other sources.
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 »  Model inputs: The category model inputs refers to information about each applicant used 
by the model to make a prediction. In lending, this often includes loan-to-value ratios, credit 
scores, and data reflecting past credit utilization and repayment.

 »  Model outputs: The category model outputs refers to the predictions of a target variable 
returned by a particular model. The predictions are class labels for classification models 
(such as will default within six months) and estimates for regression models (such as the 
time before repayment is 65 days).

 »  Protected class features: Under current anti-discrimination requirements in lending, firms 
generally cannot consider an applicant’s protected class characteristics when making a 
credit decision and are prohibited from collecting data about protected class status outside 
of mortgage lending, even though such information is critical to fairness evaluations.215 This 
affects the quality and accuracy of traditional fair lending analysis as firms have to account 
for uncertainty associated with the protected class estimates and will have similar effects 
on efforts to use other proposed fairness metrics. For this reason, firms and regulators use 
statistical methods like Bayesian Improved Surname Geocoding (BISG) to impute an appli-
cant’s protected class characteristics in areas outside mortgage lending based on name, 
address, and other factors.216 

 »  Actual outcomes: The category actual outcomes or ground truth refers to the observed 
values of the target variable (such as whether or not the borrower in fact defaulted within 
six months or the actual time before loan repayment). Lenders will typically have this data 
for every borrower who accepts their offer of credit and may be able to purchase such data 
about other consumers.

Inability to acquire or use all of these types of data naturally limits the utility of some of 
these alternative metrics for measuring fairness, especially in the context of credit underwriting. For 
example, lenders will have actual outcomes data only for a subset of their applicant pool—those 
to whom they offered credit and who accepted the offer—but not for those whom they denied 
credit or who declined an offer of credit. This may limit their ability to assess whether their models 
are making mistakes with respect to a set of denied applicants whose credit characteristics should 
have qualified them for a loan. 

Further, even where data are available, some of the proposed measures may create tension 
with existing oversight structures. For instance, to the extent that achieving fairness under some of 
these definitions requires ensuring representation of various groups without regard to likely loan 
outcomes, those measures may prove impractical in light of safety and soundness requirements. 

Moreover, even where data availability is not an obstacle, it is not generally possible to optimize 
model performance across all—or even several—of these definitions at once. Even if the metrics 
are used only in marginal ways to adjust models in development, improving fairness according to 
one measure may cause deterioration in others. Given this, commentators on a subset of the most 
widely discussed metrics—such as demographic or statistical parity, equal opportunity or predictive 

215  ECOA generally prohibits collection and use of information about an applicant’s protected class characteristics outsides of residential 
mortgage lending (see Section 2.3.2 and Appendix B).

216   For purposes of this section, the term protected class features contemplates use of either actual or imputed data. For the original study 
on BISG and applications of the method, see Marc N. Elliott et al., A New Method for Estimating Race/Ethnicity and Associated Dispari-
ties Where Administrative Records Lack Self-Reported Race/Ethnicity, 43 Health Services Research 1722-1736 (2008), Robert Letzler et al., 
Knowing When to Quit: Default Choices, Demographics and Fraud, 127 Econ. J. 2617–2640 (2017), and Blattner & Nelson. For CFPB’s exam 
manual and guidance, see Consumer Financial Protection Bureau, Supervision and Examination Manual (2020). See also Consumer Financial 
Protection Bureau, Using Publicly Available Information to Proxy for Unidentified Race and Ethnicity (2014) (a CFPB white paper discussing 
the BISG method as a proxy methodology to impute information of race).
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parity, and equalized odds which are discussed further below217—have set forth an “impossibility 
theorem of fairness.” This suggests that although these metrics present their own set of advantages, 
they are mutually exclusive in normal circumstances—that is, it is not possible to satisfy all the 
conditions of the fairness metrics simultaneously and that building a model to be fair according to 
a particular definition of fairness will impose tradeoffs as to other conceptions of what it means to 
be fair.218

For these reasons, many of the proposed metrics may only be used currently in relatively narrow 
ways at selected stages of the development process, such as evaluating potential features in early 
model development stages, evaluating the effect of scores cutoffs or other similar rules, or assessing 
marketwide dynamics where it may be possible to assemble broadly based datasets that include 
consumer activities across financial institutions and over time. In practice, these metrics primarily 
function today as analytical tools that help firms gain insight into various aspects of a model’s 
operations and effects in the iterative process of developing and reviewing models.219 This means 
that efforts to optimize models using these metrics or simply understand what one metric might 
say about a model’s fairness may be limited to early stages of development and occur separate and 
apart from traditional analyses to assess fair lending compliance prior to or after deployment. 

In this context, these metrics can help lenders understand where disparities may occur and 
help identify ways to address them. But critically this implies that traditional governance processes 
remain important due to the deeply contextual nature of understanding what fairness means—that 
numbers generated by one metric or another do not simply automate decisions about compliance 
with anti-discrimination requirements.220 

Further, these approaches to measuring fairness have not yet been adapted to measure com-
pound or multiple protected class features.221 For instance, they can be used to measure whether 
applicants who are Native American are treated fairly as compared to other race and ethnicity groups, 
or whether women are treated fairly as compared to men. But they cannot gauge whether Native 
American women are treated fairly as compared to other compound categories.

Finally, and most importantly, none of these metrics provide an entirely satisfying answer for how 
to deal with the existence of underlying factors that may drive differences in actual loan defaults (or 
other predicted outcomes) where those factors may themselves be the result of prior discrimination 
and historical bias. Some of the metrics focus on whether a model’s predicted outcomes are consis-
tent across different groups or individuals without regard to actual performance. But in lending, if 
optimizing models to be “fair” under such metrics leads to loans being made to applicants who will in 
fact not be able to repay them, both the applicants and the lenders will suffer as a result. In contrast, 
other metrics focus on whether a model is consistently accurate in predicting actual outcomes across 

217   Each of these metrics will be explored more fully in the following section (Section 5.2.1).
218   For instance, where a model satisfies equal opportunity, it will generally not be possible to also satisfy the criteria for demographic parity 

and equalized odds. In the context of college applicants, for example, if the number of women and men who applied and are qualified 
differ, it is not possible to have equal opportunity (same percentages of qualified students admitted by gender), as well as demographic 
parity (same percentage of students admitted from both genders). Similarly, if equal opportunity is satisfied, it is not possible to satisfy 
the criteria for equalized odds that the percentage of unqualified students rejected by the college is the same across both genders. See 
Jon Kleinberg et al., Inherent Trade-Offs in the Fair Determination of Risk Scores, arXiv:1609.05807v2 (2016); Alexandra Chouldechova, Fair 
Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments, arXiv:1703.00056v1 (2017); Nengfeng Zhou et al., 
Bias, Fairness, and Accountability with AI and ML Algorithms, arXiv:2105.06558v1 (2021).

219   Although there are ongoing debates regarding these fairness measures among academics and practitioners, some lenders have recog-
nized using these metrics during model development to understand better the fairness effects of different model specifications. See 
Upstart, Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, Including 
Machine Learning at 17-19.

220   Sandra Wachter et al., Why Fairness Cannot Be Automated: Bridging the Gap Between EU Non-Discrimination Law and AI, Computer L. & 
Security Rev. (May 17, 2021).

221   Id.
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different groups.222 But consistent accuracy is not sufficient to satisfy broader questions of fairness 
and equity if the factors driving disparities in actual outcomes are the results of prior discrimina-
tion and historical disparities in society and in lending. Such considerations further emphasize that 
notions of fairness are complex and often context-specific, and that no one mathematical formula 
can capture all relevant dimensions.223

5.2.1 Fairness Metrics
This section provides more in-depth consideration of a set of statistical and similarity-based 

measures of fairness that has been the focus of the most academic attention.224 Some measures—
like the first four measures presented below—can be computed after a prediction is made to 
assess disparities in the predictions of default for different groups, either in general, after taking 
into account certain critical factors, or focused more specifically on disparities in the accuracy of 
the predictions. Other measures, such as counterfactual fairness and fairness through awareness, 
make certain mathematical or data adjustments to achieve particular notions of fairness. Section 
5.3 discusses additional methods of debasing data and models that can be applied using several of 
the fairness metrics that are described in this section. 

This section makes two simplifying assumptions. First, the text uses a binary category—male 
and female—to illustrate groups that can be the subject of a fairness evaluation. Second, each 
metric is illustrated in the context of sorting good avocados from bad ones to help readers grasp 
how each metric works and how these measures compare to each other in an intuitive context, in 
addition to discussing potential applications in lending. 

Simple examples are used throughout this section to illustrate each of the metrics. The examples 
start by imagining a worker in a factory processes avocados for resale to grocery stores. The avo-
cados come from two countries—Alpha and Beta—and are processed by a worker who separates 
avocados that can be resold from those that cannot. If the worker determines an avocado is likely 
to be good when the grocery store sells them to a customer, then it will be selected for resale. If 
the worker determines an avocado is likely to be bad by that point in time, then the avocado will 
be thrown out. 

The following table summarizes details used in several examples of various approaches to eval-
uating algorithmic fairness:

ALPHA GOOD AVOCADOS BAD AVOCADOS TOTAL
Accepted 30 6 36

Rejected 15 9 24

Total 45 15 60

222  In statistics and data science, accuracy has a technical definition: (TP [true positive] + TN [true negative]) / (TP + TN + FP [false positive] + 
FN [false negative]), which refers to the number of true cases out of all cases examined. In this section, “accurate” is referring more broadly 
to correct predictions of outcomes.

223   See Kristine Gloria, Power and Progress in Algorithmic Bias, Aspen Institute 5 (2021) (discusses how situations in which a certain fairness 
metric is achieved still may not result in “fair” outcomes and suggests the objective of fairness in lending may need to be reframed).

224   This section provides definitions for eight metrics of fairness selected for their relevance to credit underwriting. In the literature, there 
are additional metrics for measuring fairness which are not covered in this report. The additional metrics include false positive error rate 
balance, conditional use accuracy equality, overall accuracy equality, treatment equality, test-fairness, balance for positive class, balance 
for negative class, no unresolved discrimination, no proxy discrimination, fair inference, marginal effects, preferred treatment, preferred 
impact and equal accuracy. See Pessach & Shmueli; Verma & Rubin at 1-7. Appendix C provides an overview of metrics not covered in 
depth in this section.
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BETA GOOD AVOCADOS BAD AVOCADOS TOTAL
Accepted 20 4 24

Rejected 8 8 16

Total 28 12 40

In the context of machine learning terminology, the good and bad avocados are the ground-
truth labels and the accepted/rejected categories/classifications are the predictions made by the 
worker based on his or her assessment that a particular avocado will be good at the time a grocery 
store sells it to a customer. 

5.2.1.1 Statistical Measures
Statistical measures of fairness divide individuals into protected classes, such as race or gender, 

and compare some statistical measure, such as predicted ripeness or default levels, across those 
groups. For this reason, these definitions are said to measure group fairness, focusing on whether 
different groups are treated equally, instead of trying to assess fairness at the individual or applica-
tion level. Depending on how models and/or decision-making processes are optimized for fairness 
under these definitions, it is worth emphasizing that the models may be made fairer on average but 
still result in individual decisions that are inaccurate.

Demographic or Statistical Parity
Metric Description: Demographic or statistical parity evaluates fairness based on whether the 

predicted outcomes are the same across particular subpopulations of interest. In underwriting, for 
example, demographic parity metrics would assess whether a particular model predicts the same 
risk of default across different protected class groups, for example men and women. 

Illustration: To satisfy demographic parity, the total percentage of avocados considered accept-
able to be sold at grocery stores from Alpha has to be equal to the total percentage of avocados 
considered acceptable to be sold at grocery stores from Beta. For example, if the worker determines 
the same percentage of avocados from both Alpha and Beta—whether that percentage is high or 
low—are acceptable for resale, then the worker’s predictions satisfy demographic parity. The chart 
above satisfies this metric because 60% of each country’s avocados are accepted for resale (regardless 
of whether they are actually good or bad). The metric does not look at how closely the predictions 
are tied to actual outcomes, but rather simply whether the model produces the same ratio of good to 
bad predictions for each group of avocados.

Analysis: This approach is used in traditional fair lending analysis and is supported by legal and 
regulatory precedent. Proponents argue that optimizing for this measure leads to higher inclusion 
effects and an increase in the number of people from protected groups. However, there are several 
criticisms for using this method as the sole or primary means of measuring fairness. Depending on 
the measures taken to maximize statistical parity, a model may not treat all individuals consistently. 
In the context of credit underwriting, using a model that ensures full demographic or statistical par-
ity could lead lenders to reject individual applicants with low risks of default or to accept individual 
applicants with high risks of default to ensure that strict demographic or statistical parity with 
other groups is achieved. Such a result would lead to inconsistent treatment at the individual level 
and could pose risk of consumer harm through disparate treatments of the better-performing group 
and raise serious regulatory questions in any practical setting. Further, if a lender were to approve 
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credit for individuals who are deemed high risk to satisfy demographic parity, there is a potential 
for adverse outcomes both for applicants who are given loans under that rationale and for lenders 
who suffer losses if such applicants default. 

Data Requirements: To compute demographic or statistical parity, protected class features and 
model outputs are required. 

Mathematical Notation: 

P(d = 1 | G = m) = P(d = 1 | G = f),

where P refers to the probability, d refers to the predicted decision (for approval of credit), 
and G refers to gender, which can be either m (male) or f (female).

Conditional Statistical Parity
Metric Description: Conditional statistical parity measures whether the likelihood of a pre-

dicted positive outcome is the same across subgroups, once a set of control variables has been 
accounted for. The variables are typically chosen because they have a close link to the outcome 
being predicted by the model, and thus increase the accuracy of its predictions. Such variables can 
also often enhance the perception of fairness for different groups, because they facilitate more 
nuanced comparisons and consistent treatment once these key factors have been accounted for. 

Illustration: If the worker sorting avocados systematically controls for factors such as size in 
determining whether an avocado is likely to be good or bad at the point of resale by a grocery store 
because small avocados ripen faster, then the ratio of good and bad avocados from Alpha and Beta 
can be considered an example of conditional statistical parity.

Analysis: The addition of well-chosen legitimate control factors can help to reduce the criticisms 
of general statistical parity because accounting for intuitive control inputs to the prediction focuses 
the analysis on whether groups that are consistent as to those inputs are treated consistently.225 In 
credit underwriting, for example, such an analysis would consider whether there are disparities in 
treatment among demographic groups after factoring in whether applicants have sufficient income 
after expenses to cover the loan payments. However, the metric does not include parameters that 
consider how the key factors or the model as a whole performs in practice, and thus cannot detect 
whether the model may be doing a substantially better job predicting particular outcomes with 
regard to one group as compared to others. 

Data Requirements: Computing conditional statistical parity requires similar data to statistical 
parity, along with additional data for the designated control factors and protected class features.

Mathematical Notation:

P(d = 1 | X = x, G = m) = P(d = 1 | X = x, G = f), 

where the notations are similar to those for statistical parity. Specific to conditional statis-
tical parity, X refers to a set of control variables, and x refers to a specific control variable 
or set of such variables.

225   The use of conditional statistical parity for assessing fairness has also been studied in other parts of the world. One such study under 
applicable European Union requirements concluded that conditional statistical parity may close an accountability gap in anti-discrimnation 
oversight, but that determinations regarding fairness cannot simply be automated. See Wachter et al (2021).
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Predictive Parity
Metric Description: Predictive parity focuses on the group of positive predictions generated 

by a particular model to determine whether there are disparities in the level of prediction accuracy 
across groups. Specifically, it evaluates whether various groups within a population have equal 
positive predictive value (PPV), where PPV refers to the number of true positives out of the total 
number of positive cases: PPV = True Positives/(True Positives + False Positives). In the context of 
lending, a “positive” label occurs when a borrower does not default on the loan. In this case, a “true 
positive” occurs when the model predicts that the borrower is unlikely to default, and the borrower 
in fact meets the obligations of their loan. On the other hand, a “false positive” occurs if the model 
predicts low risk of default, but the borrower actually defaults on the loan. 

Illustration: In the avocado example, predictive parity is achieved if the percentage of actually 
good avocados predicted to be good avocados from Alpha is equal to the percentage of actually 
good avocados predicted to be good avocados from Beta. The worker predicts that 36 avocados 
from Alpha are good, of which 30 actually turn out to be good when the grocery stores sell to con-
sumers. The worker predicts that 24 avocados from Beta are good, of which 20 are actually good. In 
this case, PPV is 5/6 for both Alpha and Beta, so this example satisfies predictive parity. 

Analysis: Predictive parity assesses whether a model is consistently accurate in predicting true 
positive outcomes across different groups rather than whether it simply yields the same predictions 
across groups, which may address some of the criticisms of both demographic or statistical parity 
and conditional statistical parity. Using this measure, fairness is achieved when the probability of an 
applicant with a low predicted risk of default actually having a low risk of default is equal between 
female and male loan applicants. Thus, fairness achieved through predictive parity can be perceived 
to be more consistently accurate compared to demographic parity because achieving this metric 
ensures that if an individual is predicted to be creditworthy, then there is an equal chance of the 
individual to actually be creditworthy, no matter the gender of the individual. 

Data Requirements: Evaluating predictive parity requires use of protected class features, model 
outputs, and outcome data. 

Mathematical Notation:

P(Y = 1 | d = 1, G = m) = P(Y = 1 | d = 1, G = f),

where the notations are similar to those in previous definitions of fairness and Y refers to 
the actual classification result of an applicant.

Equalized Odds
Metric Description: Equalized odds evaluates whether groups within a population have both 

equal true positive rates and equal false positive rates. Fairness is achieved according to equal-
ized odds where the probability of an applicant with an actual low risk of default to be correctly 
assigned a low predicted risk of default and the probability of an applicant with an actual high risk 
of default to be incorrectly assigned a low predicted risk of default are the same for both female 
and male applicants. 

Illustration: In the example of avocado sorting, achieving this metric would require that both 
the probability that a good avocado is correctly accepted from both Alpha and Beta would have to 
be equal and that the probability that a bad avocado is incorrectly accepted for resale from both 
Alpha and Beta is equal. Using the numerical example in previous sections, the number of bad avoca-
dos incorrectly accepted as a percentage of the total number of bad avocados from Alpha and Beta 
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respectively is not the same: 6/15 = 40% and 4/12 = 33%. In addition, the number of good avocados 
correctly accepted as a percentage of the total number of good avocados is not the same: 30/45 = 
67% and 20/28 = 71%. This shows that in the avocado example, equalized odds is not satisfied.

It is worth noting that, in this example, both demographic parity and predictive parity are sat-
isfied. However, equalized odds is not satisfied. In fact, except in special circumstances, there are 
actually no circumstances or combinations of numbers where all three statistical measures can be 
satisfied at the same time, which is known as the “impossibility theorem of fairness.”226

Analysis: Proponents advance equalized odds as an appropriate measure of fairness because 
it ensures equal levels of accuracy across different groups. Similar to predictive parity, however, 
the conditions for equalized odds may be satisfied without necessarily addressing broader, soci-
etal causes of inequality in key lending variables like income and assets. In addition, similar to 
demographic parity and equal opportunity, fairness through equalized odds is unable to account 
for instances when several protected classes need to be integrated to measure fairness. However, 
equalized odds can be further extended to error rate parity (ERP), which states that the ratio 
of false negative rates (equivalently true positive rates) and false positive rates should be equal 
between groups. It is argued that a lack of ERP is indicative of unfairness and lack of parity in the 
presence of historically disadvantaged groups. In such cases, ERP can be utilized to understand if 
historical injustice is being perpetuated.227 

Data Requirements: To compute equalized odds, protected class features, model outputs, and 
outcome data are required.

Mathematical Notation:

P(d = 1 | Y = i, G = m) = P(d = 1 | Y = i, G = f), i ∈ 0, 1,

where the notations are similar to previous definitions. Specific to equalized odds, i refers to 
the probability being the same for female and male applicants. 

Counterfactual Fairness
Metric Description: Counterfactual fairness evaluates whether a predicted decision is the same 

for an individual in the actual world as well as a counterfactual world where the individual belongs 
to a different protected class, and applies an adjustment to generate the same prediction as the 
counterfactual. Unlike previous measures, counterfactual fairness does not entail a post hoc anal-
ysis of the applicant outcomes by group but instead involves adjusting the data to make them 
fairer across subgroups. For example, assume a predicted decision d is dependent on credit history 
and salary. The salary for an individual is directly correlated with a certain protected class feature, 
such as gender, which makes it counterfactually unfair. To be counterfactually fair, a woman’s sal-
ary needs to be adjusted upwards with a counterfactual value, which will neutralize or mask the 
effect of gender on the model’s decision and make it relatively more likely for the woman to be 
approved for credit. This is designed to ensure that decisions taken for individuals of a protected 
class, whether in credit approvals or college applications, are fair in that they do not result from 
differences derived from or associated with protected class characteristics. 

Illustration: Using the avocado sorting example, assume that Alpha has been growing avocados 
for a long time and that Beta has only recently started to grow avocados. The farmers in Beta have 
less knowledge than those in Alpha of the type of seeds, pesticides, or methods that are needed to 

226   Zhou et al.
227   See Hellman at 811.
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produce a crop with a high percentage of good avocados. To be counterfactually fair to the farmers 
in Beta, the data on avocados is run through a model at the factory, which adjusts the data on the 
mix of agricultural inputs to be more counterfactually fair to Beta.228 

Analysis: Adjusting the data to achieve counterfactual fairness may make the predictions more 
equal across particular groups, but it does not solve the underlying disparities that may have pro-
duced different outcomes in the first place.229 For instance, if there are real disparities in income that 
make it less likely for women to actually be able to repay loans, simply adjusting the data does not 
fix the risk of a bad outcome for the consumer as well as the lender. This approach is also subject to 
implementation challenges due to the difficulty of quantifying the effects of certain characteristics 
on model predictions accurately and consistently. Finally, applying a counterfactual value to one 
variable may not account for interactions between variables or how other variables correlate with 
protected class features. 

Data Requirements: To compute counterfactual fairness, protected class features, model out-
puts and the causal model are required. 

Mathematical Notation:

A prediction d is counterfactually fair, given X = x and G = g, for all i and g = g′,  
iff P{dG=g = i | X = x, G = g} = P{dG=g′ = i | X = x, G = g},

where dG=g is interpreted as the outcome of predictor d if G had taken value g and dG=g′ is 
interpreted as the outcome of predictor d if G had taken value g′, which is a counterfactual 
value and different from g.

Calibration
Metric Description: Fairness through calibration looks not just at different groups as a whole, 

but rather breaks them into segments to assess whether there are differences in predicted out-
comes within each segment. Specifically, it measures the extent to which, for a predicted probability 
score, Z, observations in various groups have equal probability, S, of belonging to the positive class. 
In the context of credit underwriting, positive class refers to being approved for credit, whereas in 
the avocado sorting example, positive class refers to being accepted and passed on to be sold at 
grocery stores. Therefore, in the context of credit underwriting, calibration aims to achieve fairness 
by assigning for any predicted probability score, equal probability for both groups, for example, 
female and male applicants, to be approved for credit.

Illustration: To explain the fairness through calibration metrics, assume that the factory is 
receiving a large number of avocados and the sorting is automated. The factory workers now put 
the avocados on a conveyor belt and a scanner with a machine learning algorithm takes an image of 
an avocado and predicts the probability that an avocado will be good or bad when sold by grocery 
stores. To achieve fairness as calibration, if the predicted probability score is z, then the probability 
of both avocados grown in Alpha and Beta and brought to the factory to belong to the positive 
class is z. This can be shown in a table as:

228   Another method would be to adjust the actual mix of agricultural inputs, for instance if Alpha shares the inputs with Beta so that any 
inherent differences between the avocados grown into the two countries will be eliminated. 

229   See generally Lily Hu & Issa Kohler-Hausmann, What’s Sex Got to Do with Fair Machine Learning?, FAT* ‘20: Proceedings of the 2020  
Conference on Fairness, Accountability, and Transparency 513 (2020).
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TABLE 1   CALIBRATION SCORES

Z 0.2 0.4 0.6 0.8 1.0
P(Y = 1|Z = z, C = A) 0.2 0.4 0.6 0.8 1.0

P(Y = 1|Z = z, C = B) 0.2 0.4 0.6 0.8 1.0

where the predicted score z is calculated for all avocados on the conveyor belt and the results are 
binned in 5 bins, from 0.0 to 1.0. For instance, if Table 1 was an example of calibration scores for avo-
cado sorting, it shows that avocados from both Alpha and Beta with a high prediction of being bad 
have an equivalent probability to actually be bad. Conversely, avocados from both Alpha and Beta 
with a high prediction of being good have an equivalent probability to actually be good. With the 
calibration scores presented in Table 1, the calibration classifier for measuring fairness is satisfied. 

Analysis: For the stylized scenario in Table 1, as the predictions for the two groups are equal to 
actual outcomes, it may lead to higher inclusion as neither group experiences any bias. For example, 
when credit scoring female and male applicants,230 it is more likely that a male applicant with a bad 
credit score (low values of z) will actually have a low risk of default than a female applicant with a bad 
score, but that applicants of both genders with a good predicted credit score (high values of z) have 
an equivalent chance to have a low risk of default. For Table 1, this means that the values in columns 
1 and 2 in row 1 are higher compared to those in row 2, but they equate at higher values of s such as 
0.8 and above.231 

Data Requirements: To compute fairness through calibration, protected class features, model 
outputs, and outcome data are required. 

Mathematical Notation: 

Fairness through calibration can be denoted as: P(Y = 1|Z = z, C = A) = P(Y = 1|Z = z, C = B).

5.2.1.2 Similarity-Based Measures
Similarity-based fairness measures evaluate whether similar individuals are treated similarly and 

define parity as between similar individuals based on their observed features instead of assessing 
fairness across groups.232 Thus, while some of the metrics are conceptually similar to the group-based 
metrics described above, these definitions assess whether a model generates similar outcomes for 
individuals with similar characteristics.

Fairness through Unawareness
Metric Description: Fairness through unawareness is a baseline assumption used as a foil for 

evaluating other fairness methods. It assumes that fairness is attained as long as attributes as 
to which fairness requires neutrality—such as race or gender in the context of lending—are not 
included in the training and deployment datasets for classification. 

Illustration: In the case of automated avocado sorting, fairness through unawareness is achieved 
if the machine learning algorithm does not incorporate the country of origin of the avocado into 
the prediction. As this sorting machine takes an image of an avocado to make a prediction, it is not 

230   In Table 1, male applicants can be assumed to be C = A, whereas female applicants can be assumed to be C = B.
231   See Verma & Rubin.
232   Cynthia Dwork et al., Fairness Through Awareness, arXiv:1104.3913v2 (2011).
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taking into account the country of origin, which means that for this case, fairness through unaware-
ness is achieved.

Analysis: In practice, barring protected class characteristics from being included in the data used 
to train or operate a model may not be sufficient to lower bias or increase fairness in credit approvals 
due to the presence of model inputs that correlate with the information held out of consideration to 
achieve fairness through unawareness. This suggests that fairness through unawareness is unsuitable 
when protected attributes can be inferred from non-protected attributes.233 In practice, this means 
that fairness through unawareness may provide a degree of formal confidence in delivering fair results 
without addressing complexities related to implicit sources of bias, including proxies for protected 
class characteristics that are found in most datasets. In lending, prohibitions on the use of protected 
class characteristics in making credit decisions has shifted attention to being able to detect forms 
of discrimination that result from data with strong enough relationships to prohibited bases to be 
considered a direct proxy for that information and from data or relationships that result in a model’s 
predictions disfavoring groups on the basis of a prohibited characteristic.

Data Requirements: Fairness through unawareness does not require any additional data.

Mathematical Notation:

When assessing fairness through unawareness, the risk of default is predicted by P(d = i | X = x),

where X is the set of features excluding G (gender), which is the protected class attribute. 

Fairness through Awareness
Metric Description: Fairness through awareness states that fairness is attained if individuals 

who are similar with respect to various characteristics receive similar classifications with respect to 
the classification task at hand, irrespective of their protected class features. A similarity or distance 
measure is used to identify similarities between individuals along various characteristics and to 
assess individual-level fairness in classification tasks.

Illustration: In the example of automated avocado sorting, fairness through awareness is 
achieved if the machine learning algorithm defines a metric which calculates the similarities between 
the avocados and identifies the avocados that will be resold based on that metric. In this approach, 
two similar avocados will receive similar classifications by the machine learning algorithm in terms 
of whether they are accepted for resale or rejected, irrespective of what country they are from. For 
example, two avocados of the same size will be similarly classified.

Analysis: In theory, this approach can address concerns with “fairness through unawareness” 
measure and is potentially relevant to fair lending considerations if incorporating protected char-
acteristics into the distance metric improves the context in which subpopulations are assessed. 
However, while similarity has been considered in the context of achieving “fair affirmative action” 
in hiring, there is no clear and objective way to calculate “similarity” through the distance metric 
that can be readily applied to other fields, such as credit underwriting. Moreover, similarity in this 
context cannot be related to protected class data. Defining a similarity metric that does not reflect 
correlations with protected class characteristics may limit severely the practical application of this 
approach.

Data Requirements: To measure fairness through awareness, model outputs and a similarity 
measure are required.

233   Pratik Gajane & Mykola Pechenizkiy, On Formalizing Fairness in Prediction with Machine Learning, arXiv:1710.03184v3 (2018).
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Mathematical Notation:

The similarity of individuals is defined by a distance metric, where the distance between the 
distributions of outputs for individuals should be at most the distance between the individuals. 
Formally, fairness can be achieved if K(d(m), d(n)) <= k(m,n), where k refers to a distance metric 
between individuals, and is mapped for a set of applicants v to probability distributions over 
outcomes d : v > δZ, and a distance metric K between distribution of outputs.

5.3 Model Debiasing
In response to concerns about bias and discrimination across a variety of sectors and use cases, 

data scientists have produced a variety of methods for debiasing machine learning models that 
can be used at several different stages of the model development process. How to deploy these 
debiasing techniques—which techniques to use and how to pair them—depends primarily on the 
model’s use case, as well as the type of data and model being used, the complexity of the model, 
and whether the relevant objective for debiasing is a particular measure of fairness, accuracy, or 
parity as discussed in the previous section. 

In the context of developing a machine learning underwriting model, established business and 
risk management practices typically require sustained attention and oversight to monitoring and 
mitigating biases against protected classes throughout the process of developing, implementing, 
and operating the model. However, in practice, lenders face uncertainty when considering whether 
and how to use methods described in this section. Some methods require use of protected class 
information in ways that create tension with existing anti-discrimination laws, which has been sig-
nificant enough to chill substantial adoption of these methods absent clarification from regulators. 
Other methods may undercut established risk management expectations. For example, banks’ fair 
lending compliance teams are generally expected to conduct independent evaluations of lending 
decisions using real or imputed protected class information that is not available to model devel-
opment teams. There is uncertainty about whether making this information available to model 
developers for the purpose of model debiasing is a practice that could potentially subject firms to 
regulatory criticism for compliance risk management weaknesses in addition to creating exposure 
to disparate treatment claims. 

Further, some key approaches for debiasing real-world datasets, such as resampling or reweighting 
the distribution in training data, may be infeasible on a practical level given their cost and the need to 
know ex ante which sensitive features are driving the disparate outcome and to have comprehensive 
labels for both protected class features and proxy variables.234 

This section provides an overview of debiasing options throughout the model development lifecycle.

5.3.1 Debiasing Approaches
Recent data science advances in debiasing fall roughly into three categories based on when they 

occur in the model development lifecycle. These debiasing techniques are applied to the input data, 
the model, or the model outputs. Debiasing activities can generally be categorized as follows:

 »  Pre-processing: Pre-processing debiasing techniques are used to transform the input data 
in ways to reduce bias. In most of these methods, this transformation occurs during prepa-
ration for training and primarily affects training data. Pre-processing methods shape the 

234   See Hooker.
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data that are used to generate the model training algorithms but do not involve direct 
modifications to the algorithms themselves.

 »  In-processing: In-processing debiasing techniques use specialized machine learning training 
methods to reduce bias as the algorithm develops the underwriting model. These debiasing 
methods are not used once the model is deployed—they only modify the model training 
algorithm.

 »  Post-processing: Post-processing debiasing techniques transform the output of a machine 
learning model while the model is in use to reduce bias in the model’s predictions. Most 
post-processing methods modify the outputs of a machine learning model using actual pro-
tected features and are therefore not relevant for financial services applications like credit 
underwriting due to disparate treatment requirements.235

Pre-processing and in-processing paradigms will be described and illustrated in turn below. 
Although adoption of individual techniques may be limited in the context of credit underwriting 
for reasons as varied as concerns about efficacy and regulatory uncertainty, interest in using these 
methods is growing. 

5.3.1.1 Debiasing Through Pre-Processing
In this paradigm, a pre-processing method or transformer modifies data before it is used as 

inputs to the machine learning technique, where inputs in the training stage refer to features and 
outcomes data, and in the deployment stage, inputs refer only to features data. Most pre-processing 
debiasing methods only apply this transformation during training (as in Figure 5.3.1.1). Pre-processing 
methods use protected class characteristics—either actual data or imputed information—though 
the resulting machine learning model does not.

FIGURE 5.3.1.1   ILLUSTRATIVE PRE-PROCESSING DEBIASING PROCESS
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235   Emerging work on post-processing techniques may enable model debiasing in which protected class features are not required in actual 
deployment. Using a particular distance measure called the Wasserstein metric, protected class features of individuals are determined 
and then used for post-processing debiasing. This is useful in situations where actual protected class features cannot be used or are not 
available, which is often the case in credit underwriting. For details, see Alexey Miroshnikov et al., Wasserstein-Based Fairness Interpret-
ability Framework for Machine Learning Models, arXiv:2011.03156v2 (2021). 
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In general, debiasing techniques used during pre-processing have the advantage of using stan-
dard machine learning methods without modification. This means that pre-processing methods are 
compatible with “out of the box” machine learning software—since the machine learning methods 
do not require modification. Pre-processing methods are designed to reduce bias in any machine 
learning models trained on the pre-processed dataset, but such techniques will only be effective 
if future input data have a similar distribution to the training data. In practice, however, chang-
ing the dataset used to build a model may introduce other concerns, including risks related to 
disparate treatment liability where the transformations involve use of protected class status. In 
addition, even small divergences between deployment and training data will undercut the effi-
cacy of pre-processing debiasing methods, just as data drift generally affects the accuracy of any 
machine learning model. In some cases, alterations to training data may enhance the likelihood 
of divergences between training and deployment conditions. Further, more research is needed to 
understand the circumstances in which synthetic data can be used with minimal risk of introducing 
accuracy, fairness, or other problems. 

There are three main approaches to pre-processing debiasing methods: augmenting, transforming, 
or generating synthetic training data.

Augmenting Training Data
Description: In many cases, the training data reflect statistical biases—for example, it might 

contain a disproportionate number of White applicants with low risk profiles relative to non-White 
applicants when compared to the general population. Augmenting the training data is one way to 
correct this type of bias by, for example, adding more data points for non-White applicants assigned 
lower probabilities of default and for White applicants assigned higher probabilities of default. 
Developers may implement these methods to ensure that the training data meets the conditions of 
any of a number of approaches to measuring fairness as discussed above in Section 5.2.236

This method adds data points to the training dataset, prior to training the machine learning 
model. Oversampling is a common example, for instance by adding actual data from historically 
excluded groups to create a more balanced distribution and more accurate predictions for appli-
cants from those groups. Where such data are not readily available, however, other forms of data 
augmentation draw from the existing training data and may involve the generation of synthetic 
data in some cases. For example, if a model developer was interested in trying to predict a very 
rare disease, he or she might construct a dataset using oversampling by duplicating data for people 
with that disease. After oversampling, the ratio of people with the disease in the dataset might be 
1:50,000 rather than 1:1,000,000. Oversampling is used when there is a significant imbalance in the 
classes that the model is trying to predict. The focus here is on removing underlying statistical bias 
by generating a training dataset with a more representative distribution.

Analysis: Certain implementations of this approach improve fairness under these metrics with 
only a moderate effect on the model’s accuracy.237 Data augmentation has most commonly been used 
in the fields of computer vision and natural language processing to improve the robustness of mod-
els.238 While data augmentation for financial time series data has yet to be systematically researched, 

236   See e.g., Shubham Sharma et al., Data Augmentation for Discrimination Prevention and Bias Disambiguation, Proceedings of the AAAI/
ACM Conference on AI, Ethics, and Society 358-364 (2020) (using data augmentation to minimize bias, achieving improved accuracy in 
model prediction). 

237   Id.
238   See e.g., Sebastian Cygert & Andrzej Czyżewski, Toward Robust Pedestrian Detection with Data Augmentation, 8 IEEE Access 136674-

136683 (2020); Connor Shorten et al., Text Data Augmentation for Deep Learning, 8 J. of Big Data art. 101 (2021).
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one study suggests that some augmentation methods help improve model performance.239 However, 
it is important for more research to be conducted using augmented data for financial time series data 
in order to have a better idea of the reliability of this method in this area. 

Transforming Training Data
Description: Another approach to debiasing during pre-processing is to transform, rather than 

augment, the training data. The transformations are done with the aim of making it as difficult 
as possible to predict the protected feature(s) from the data. If the developer of an underwriting 
model were to use this approach, for example, suppose a dataset contains five attributes (“X”) 
for each individual: debt-to-income ratio, credit score, utilization patterns, credit product mix, and 
account recency. The model developer also has real or imputed information about each individual’s 
gender, the protected feature (“P”) that is the focus of the debiasing effort, and whether the indi-
vidual defaulted within six months, which is the “outcome” attribute (“Y”). 

To debias the model by training data transformation, the model developer tries to predict the 
protected feature P based on the non-protected features in the dataset (X). If P can successfully be 
predicted, then the developer modifies the non-protected features X until they are nearly impossi-
ble to predict P. One way to achieve this effect is by modifying individual features such that their 
distribution is equal for both groups. For instance, if the training data are transformed such that the 
distribution of utilization patterns between female and male credit applicants are similar, it is not 
possible to distinguish between the protected groups which leads to a debiased model.240 

Analysis: This approach is theoretically appealing, and has influenced the development of 
a variety of other debiasing techniques, including adversarial debiasing. However as noted with 
respect to augmenting training data, the potential impacts of adding fabricated or modified data 
on accuracy are difficult to predict, making it challenging to deploy these methods in practice.

Generating Synthetic Training Data
Description: Model developers can use generative adversarial networks (GANs)241 to produce a 

synthetic—meaning new and artificial—dataset designed to have a fairer representation than the 
original dataset with respect to particular groups or attributes. The synthetic data, rather than the 
original data, is then used for model training. For example, a fairness GAN might generate debiased 
data such that the synthetic dataset has equal representation of applicants across protected class 
features (which may be imputed using BISG), or is fair according to some other specified metric.242 
The model can then be trained and tested using the synthetic dataset to generate fairer predictions 
compared to a model using the original data.243 Synthetic data refers to artificial data which are gen-
erated using GANs, whereas augmentation of data (see Section 5.3.1.1), can refer to either synthetic 
or actual data that are added to a training dataset to create more balance across different groups 
by probability of default (or other target variable). 

239   Elizabeth Fons et al., Evaluating Data Augmentation for Financial Time Series Classification, arXiv:2010.15111v1 (2020).
240   Michael Feldman et al., Certifying and Removing Disparate Impact, KDD ‘15: Proceedings of the 21th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 259-268 (2015).
241   GANs involve two neural networks: a generator and a discriminator. The original use for GANs was to produce realistic data. In this case 

the generator produces new data points, while the discriminator tries to guess whether the points are real or artificial (produced by the 
generator). Both networks are trained simultaneously, such that the generator produces better examples while the discriminator becomes 
better at identifying artificial examples. 

242   Each of these approaches to measuring algorithmic fairness is explained in Section 5.2.
243   Prasanna Sattigeri et al., Fairness GAN, arXiv:1805.09910v1 (2018).
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Analysis: GANs have garnered attention because they help users mitigate data security and pri-
vacy risks, since they do not generate information about real people and are flexible in the amount 
of data they can generate. They can also be restricted to produce data with specified properties—
such as equal representation of applicants with specified characteristics. However, changing the 
dataset used to build a model introduces significant concerns. For example, synthetic data may 
diverge significantly enough from the reality in which the model is intended to operate that it 
raises concerns about the model’s robustness. For instance, synthetic data generated for minority 
groups who are approved for loans may not result in reliable data points if they are produced from 
relatively small amounts of similar data that may not accurately reflect the full range of experience 
for those groups. The accuracy of the resulting model will only be as good as the design and imple-
mentation of the GAN.

5.3.1.2 Debiasing Through In-Processing
In this debiasing approach, debiasing is built into the machine learning algorithm used to train 

a model. Most in-processing methods use a debiasing function during training only. This debiasing 
function has access to real or imputed protected features, though the resulting machine learning 
model itself does not. In deployment, there is no debiasing function present.

In-processing debiasing approaches have the advantage of not altering training data, which 
can introduce accuracy and fairness risks as discussed above. Both common forms of in-processing 
debiasing also can be adapted easily to use a wide variety of mathematical definitions of fairness 
as discussed in Section 5.2. However, as with pre-processing debiasing techniques, the efficacy of 
in-processing debiasing depends on the deployment data conforming to a significant degree to the 
model’s training data.

FIGURE 5.3.1.2   ILLUSTRATIVE IN-PROCESSING DEBIASING PROCESS
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There are two popular approaches to in-processing debiasing: regularization and adversarial debiasing.
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Regularization 
Description: In addition to the use of regularization to increase transparency in models as dis-

cussed in Section 3.4.1.3, regularization can also be used to debias models. Adding regularization 
terms to the objective function leads the learning algorithm to select only relevant features, which 
decreases bias in the model and reduces the probability of overfitting.244 Similarly, for the purpose 
of debiasing, regularization can add a penalty feature that is intended to increase fairness in a 
machine learning model. For example, a model developer training an underwriting model which 
can draw on 1,000 features as inputs wants the final model to use a small number of features for 
predictions because that will simplify the task of producing explanations.245 

Analysis: Regularization approaches are appealing for several reasons: various types of regu-
larization are well-understood and commonly used in machine learning, and these approaches only 
require access to protected features during training.246 On the other hand, regularization usually 
requires hand-tuning—for example, to adjust the strength of a penalty—to achieve the desired out-
come, which can be operationally cumbersome. However, there are practical challenges for firms 
considering this approach. In general, firms are expected to conduct independent fair lending assess-
ments of their credit decisions and typically limit access to real or imputed protected class data to 
compliance teams to prevent improper use of that information and to reinforce the independence 
of compliance risk management functions. As a result, model development teams cannot practically 
build, tune, or test a model using information about protected class characteristics without deviating 
from standard practice. 

Adversarial Debiasing
Description: Inspired by success in the context of image generation, adversarial debiasing meth-

ods have garnered increased attention.247 Adversarial debiasing uses two separate machine learning 
models that interact during the training process. For example, if deployed in the development of an 
underwriting model: 

 »  The predictor model is an underwriting model that predicts the likelihood of default based 
on input data that do not include protected class characteristics.

 »  The adversary model tries to predict protected features such as the applicant’s race or gen-
der based on the default probability that the predictor model produced for each individual 
in the training dataset. In other words, the adversarial model uses the predictor model’s 
output as its input.

244  Toshihiro Kamishima et al., Fairness-Aware Learning Through Regularization Approach, 2011 IEEE 11th International Conference on Data 
Mining Workshops 643-650.

245   Consider a simplified scenario. Without regularization, the most accurate model (M1) model produced by the learning algorithm uses 400 
features and has an objective function value of 70,500. The second-most accurate model (M2) uses 100 features, and has an objective 
function value of 66,000. A training procedure designed to return the largest objective function value will return model M1. However, if 
the model developer adds regularization, a penalty of -100 will be deducted from the objective function for every feature used in the 
resulting model. Now, the “regularized” objective function values for two possible models are: 30,500 (or the original objective function 
value, 70,500, minus 100 for each of the 400 features used) for M1 and 56,000 (or the original objective function value of 66,000 minus 
100 for each of the 100 features used) for M2. In this case, M2 has a larger, regularized objective since it uses fewer features than M1, and 
a training procedure using this regularized objective will return model M2.

246   However, regularization and other methods to increase simplicity in models may, conversely, lead to inequity or increase bias. See Jon 
Kleinberg & Sendhil Mullainathan, Simplicity Creates Inequity: Implications for Fairness, Stereotypes, and Interpretability, EC ‘19: Proceed-
ings of the 2019 ACM Conference on Economics and Computation 807-808 (2019).

247   Brian Hu Zhang et al., Mitigating Unwanted Biases with Adversarial Learning, Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, 
and Society 335-340 (2018).
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Section 5: Fairness and Bias

This approach posits that the more accurate the adversary is in identifying the applicant’s pro-
tected class status, the more biased the underlying underwriting model is. During training, the 
predictor model is optimized according to two objectives: maximizing accuracy of the prediction of 
applicants’ default risk and decreasing the accuracy of the adversary’s predictions of the protected 
class characteristics of individual applicants. Simultaneously, the adversary is optimized to accu-
rately predict the protected feature. During deployment, only the predictor model is used, without 
guidance from protected-feature data.

Analysis: Given the success of adversarial methods in areas of machine learning such as genera-
tive models and computer vision tasks, it is natural that firms in financial services and other sectors 
are interested in learning more about these techniques. This approach has the potential of making 
more robust and explicit firms’ search for less discriminatory alternatives in the third prong of the 
disparate impact analysis, although concerns about potential fair lending risks associated with using 
protected class information in this application have chilled research. GANs support generation of a 
fairness-accuracy curve that can help model development teams assess tradeoffs between a multi-
plicity of models. However, efforts to develop adversarial debiasing techniques further and deploy 
them for underwriting have been substantially chilled by uncertainty related to the use of protected 
class information. Even if regulators clarify that such uses are permitted, additional factual ques-
tions will need to be resolved to determine their utility in the context of credit underwriting. First, 
adversarial methods are mainly intended for neural networks, and it is not clear if this approach will 
be useful for other model classes, such as linear models or decision trees. Second, the foundational 
research on adversarial debiasing is recent, so more research is needed to understand whether and 
in what circumstances this approach will work in a deployed settings, including credit underwriting. 

***

Although lenders and regulators alike are interested in opportunities to make lending fairer and 
more inclusive, the path to realizing these aims will likely involve holistic consideration of the choices 
made to identify and mitigate sources of bias and discrimination problems throughout the process of 
developing and monitoring models. For example, choosing between particular fairness metrics often 
involves tradeoffs that can be difficult for the general public to understand.248 Given this, market 
practice and regulatory expectations across the entire model lifecycle are relevant to defining fair 
and responsible use of machine learning underwriting models. 

248   Debjani Saha et al., Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics, arXiv:2001.00089v3 (2020).
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6.   CONCLUSION
Market practices are rapidly evolving as to the use of machine learning for credit underwriting and 

the technology available to lenders to manage transparency and fairness concerns related to those 
models. So are the issues and debates presented in this report. Stakeholders in academia, industry, 
government, and civil society organizations are examining the capabilities and performance of cur-
rent technologies and working to develop better solutions to support responsible use of machine 
learning underwriting models.

As highlighted throughout this report, individual lenders make a series of choices in developing 
and using machine learning models that are critical to managing the reliability and fairness of those 
models and enabling effective regulatory oversight. Although machine learning can seem entirely 
novel, these decisions may not be radically different from how lenders currently develop automated 
underwriting systems. The relevant differences may relate less to the goals or objectives developers 
need to meet than with the timing of specific decisions and the tools being used.

In the context of machine learning underwriting models, the decisions that model developers 
make about how to enable sufficient transparency into how the models work and the basis for 
individual predictions are particularly important. Without transparency, for example, a lender might 
be able to detect that its model’s decisions show disparities across demographic groups, but would 
not be able to identify the causes of those disparities or reduce their problematic effects. 

Early adopters of machine learning underwriting models are developing different approaches 
to building transparent models. Some opt for inherently interpretable models, while others pair 
more complex models with post hoc explainability methods. Firms and their regulators need more 
information about how well these approaches support responsible and fair use of new underwriting 
technologies to determine best practices and to assess how law, policy, and regulation may need to 
evolve to govern a marketplace where use of machine learning underwriting models is more com-
mon than it is today. 

Those questions address not just how to comply with existing law and regulation but point to a 
broader reconsideration of the following topics: 

 »  What considerations are relevant to identifying fair, responsible, and inclusive use of machine 
learning underwriting models?

 »  What kinds of transparency are relevant to establishing that a particular machine learning 
underwriting model is fit for use? How can or should transparency be measured?

 »  Where post hoc explainability methods are used, how should firms and regulators evaluate 
the trustworthiness and utility of information produced by these supplemental analyses?



The Use of Machine Learning for Credit Underwriting   Market & Data Science Context
98

Section 6: Conclusion

 »  What decisions can lenders make about data to improve the reliability, fairness, and  
inclusiveness of machine learning underwriting models?

In the context of debate about these questions and rapidly changing technologies, FinRegLab 
and a team of researchers from the Stanford Graduate School of Business are conducting a study 
that will provide evidence relevant to many of these questions. This study will assess the capa-
bilities and performance of various model diagnostic tools designed to support responsible use of 
machine learning underwriting models across a variety of dimensions: 

 »  Type of machine learning model: Benchmark underwriting models will range from logistic 
regression and boosted trees to neural networks and ensemble models to identify whether 
the type of underwriting model being explained affects the accuracy and utility of infor-
mation produced by the model diagnostic tools;

 »  Model complexity: Each form of machine learning being evaluated will have simple and 
complex forms to help us identify the tradeoffs, if any, between performance and transpar-
ency and between performance and fairness; 

 »  Changes in economic conditions: Test datasets will simulate different economic environ- 
ments, such as data from the 2009-2010 downturn, to help assess whether the model  
diagnostic tools can help lenders identify changes in data conditions and model performance  
once in operation; and

 »  Shifts in applicant distribution: Test datasets will encompass different kinds of borrow-
ers with respect to geographic location and socioeconomic status to help us evaluate how 
well these tools detect fair lending and other risks.

The set of benchmark models have generally been designed to approximate machine learning 
models that lenders might use to estimate the risk of default associated with an application for 
credit. This evaluation will assess how a set of alternative definitions of algorithmic fairness that 
have emerged in academic literature work in the context of the underwriting models and model 
diagnostic tools used in this research. 

In addition to empirical findings, this research will propose a framework that will help all stake-
holders—model developers, risk and compliance personnel, and regulators—assess the accuracy and 
utility of accessible information about a machine learning underwriting model’s decision-making. This 
framework will provide a substantive contribution to the current oversight approaches about model 
transparency by helping to define the questions to ask about the information that currently available 
model diagnostic tools produce. Those questions will help assess whether those tools produce infor-
mation that is necessary for assessing compliance with legal and regulatory requirements and policy 
goals. This framework is intended to stimulate debate about and further contributions from various 
stakeholders regarding the development of an effective approach to promoting responsible, fair, and 
inclusive use of machine learning underwriting models.249

FinRegLab expects to report results from the empirical research being conducted with economists 
from the Stanford Graduate School of Business later this year and to conduct in-depth analysis of 
the implications of that research for law, policy, regulation, and market practice in 2022. 

249   For more on this research, visit FinRegLab’s website,  
https://finreglab.org/ai-machine-learning/explainability-and-fairness-of-machine-learning-in-credit-underwriting/.

https://finreglab.org/ai-machine-learning/explainability-and-fairness-of-machine-learning-in-credit-underwriting/
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Accumulated Local Effects (ALE) Plots: Accumulated Local Effects plots are common visualization methods 
that depict how an individual feature interacts with the model’s predictions and are used as a feature im-
portance explainability technique. ALE plots depict the relationship between the variable of interest and the 
outcome without accounting for other factors. 

Adversarial debiasing: Adversarial models are models that can be used during training to debias machine 
learning models. In this context, adversarial models attempt to predict the protected class status of an indi-
vidual based on the output of the underlying model, with the underlying model continuing to adjust until the 
ability of the adversary to correctly predict protected class characteristics diminishes to an appropriate point. 

Adversarial examples: Adversarial examples refer to an example-based explainability method by which 
weaknesses or failures of a model are identified through changes in the underlying data that cause the model 
to make an incorrect prediction.

Adverse action: An adverse action is a credit decision in which a lender declines to provide credit in the 
amount or terms requested or makes a negative change to an existing account. Federal law requires lenders to 
provide disclosures to consumers and small businesses after taking an adverse action to explain the principal 
reason(s) for the decision. 

Alternative financial data: Alternative financial data are a type of credit information that describe a variety 
of non-lending financial activities and can be extracted relatively easily from sources such as bank or prepaid 
card accounts. Depending on the source and scope of data, this information may contain more granular and 
timely information about applicants’ financial position than credit bureau information and can provide a more 
complete picture of an applicant’s ability and willingness to repay a loan. 

Attribute: An attribute generally refers to a variable or feature included in a dataset. This could include input 
variables, such as an individual’s income, as well as a target or output variable (such as whether an individual 
is likely to default on a loan).

Bagging: Bagging or bootstrap aggregation is a technique used to make random forest models or gradient- 
boosted decision trees less biased and more accurate than individual decision trees. This approach averages 
the predictions of various individual decision trees that are each trained on a different subsample of observa-
tions in the training data. 

Behavioral data: Behavioral data are a type of credit information firms may use in the context of credit un-
derwriting or for other purposes such as marketing. These data include a range of possible information (such 
as the date, time, or place of a transaction), digital activities such as search histories, or social media data. 

Bias: Bias is commonly defined by statisticians and data scientists as the variance between a model’s predic-
tions and actual outcomes. Other stakeholders use bias to refer to discrepancies across different demographic 
groups, especially for those groups which have been subject to discrimination or injustice of other forms.
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Cash-flow data: Cash-flow data are a type of alternative financial data that shows income, expenses, and 
other reserves. Cash-flow data can be derived from bank and prepaid accounts, small business accounting 
software, and other sources. 

Classification problem: A classification problem generally refers to a situation in which a target variable is cat-
egorical or binary (such as sorting credit applicants into high-risk or low-risk buckets), in contrast to a regression 
problem where the output is a continuous variable such as a score. 

Conceptual soundness: Conceptual soundness involves an assessment of the quality of a model’s design and 
construction as required by regulatory guidance on model risk governance. Evaluations of conceptual soundness 
ensure that all processes utilized to develop the model are documented thoroughly, that such documentation 
supports how the model operates, and that the choices made for the model are themselves supported by anal-
ysis and testing. The theoretical construction, key assumptions, data, mathematical calculations, and the usage 
and purpose of the data and model must all be documented. 

Counterfactual explanation: A counterfactual explanation is an example-based explainability technique. 
Counterfactual explanations describe how much a particular data point would have to change in order to 
change the predicted outcome. In other words, if someone is denied credit, a counterfactual explanation will 
search for the smallest possible change to the factors assessed in the underwriting analysis that would cause 
the model to predict the applicant would not default. 

Cluster analysis: Cluster analysis is an unsupervised learning technique in which observations—applicants in 
the case of credit underwriting—with similar attributes are grouped together in segments, without including 
a target variable such as loan defaults. Cluster analysis can be used for such purposes as segmenting custom-
ers for marketing purposes or creating groups of existing customers based on their spending behaviors and is 
useful when knowledge about actual lending outcomes is unknown. 

Credit information: Credit reporting agencies provide credit applicants’ personal information; public records 
such as bankruptcies; tradeline data which reflect an applicant’s repayment record mainly for secured and 
unsecured loans; inquiries made on the applicant’s credit files; and balance information (including available 
balance for credit cards) for use in lending and securitization of consumer loans. 

Credit scorecard: A credit or underwriting scorecard refers to a method of modelling credit risk that converts 
various characteristics of an applicant’s credit history (such as default history or debt-to-income ratio) to a 
point value and then sums these values into a total credit score that signifies an applicant’s likelihood of default. 

Data drift: Data drift can occur when the underlying conditions of a model’s training data differ from the 
data it is using to model future predictions. In underwriting, this can occur when economic conditions at the 
time that a model is deployed differ significantly from those reflected in the training data. 

Decision tree: A decision tree is a model that uses a hierarchical structure to estimate a target variable with a 
series of discrete, binary decisions. Beginning with a decision that separates the data into two or more subsets, 
each smaller decision is represented in a chain where each step of the chain corresponds to a simple “if-then” 
decision. This series of analyses eventually leads to an estimation of the target variable. 

Decorrelation: Decorrelation is a technique used to make random forest models less biased and more accurate 
than individual decision trees. This approach randomly selects a subset of features from which to select at each 
decision point in the tree. 

Deep learning: Deep learning is a form of machine learning that emulates the workings of the human brain 
by transforming input data through multiple layers of neural networks to identify complicated patterns and 
connections between input data and the target variable. Neural networks are a form of deep learning used 
for underwriting models.
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Deployment: Deployment refers to the stage in the model lifecycle when a machine learning underwriting 
model is put into use to evaluate applications from consumers and make credit decisions.

Disparate impact: Disparate impact is one of two theories for establishing legal liability for discrimination 
against groups protected under the Equal Credit Opportunity Act (ECOA) or Fair Housing Act (FHA). It pro-
hibits the use of facially neutral practices that have a disproportionately adverse effect on protected classes, 
unless those practices meet a legitimate business need that cannot reasonably be achieved through less 
discriminatory means. 

Disparate treatment: Disparate treatment is one of two theories for establishing legal liability for discrimi-
nation against classes of persons protected under the Equal Credit Opportunity (ECOA) Act or Fair Housing Act 
(FHA). It prohibits treating individuals differently based on a protected characteristic. Establishing disparate 
treatment does not require any showing that the treatment was motivated by prejudice or a conscious intention 
to discriminate. 

Equal Credit Opportunity Act (ECOA): The Equal Credit Opportunity Act of 1974 is a federal statute (codified 
at 15 U.S.C. § 1691 et seq.) that makes it unlawful for any creditor to discriminate against any applicant, with 
respect to any aspect of a credit transaction, on the basis of race, color, religion, national origin, sex, marital 
status, or age (provided the applicant has the capacity to contract); to the fact that all or part of the appli-
cant’s income derives from a public assistance program; or to the fact that the applicant has in good faith 
exercised any right under the Consumer Credit Protection Act. ECOA is implemented by the Consumer Financial 
Protection Bureau through Regulation B (codified at 12 C.F.R. Part 1002). 

Explainability: In this report, model explainability refers to the ability of various stakeholders to understand 
how or why a particular decision was made or result was reached. 

Explainability techniques: Explainability techniques are supplemental models, methods, and analyses used 
to improve the transparency of complex models. Since these tools are used after the model has been trained, 
they are often referred to as post hoc or indirect techniques. These methods do not generally affect the design 
or operation of the underlying model and can be used with a variety of machine learning model types. 

Fair Credit Reporting Act (FCRA): The Fair Credit Reporting Act is a federal statute (codified at 15 U.S.C. § 1681 
et seq.) enacted to protect consumers from the willful and/or negligent inclusion of inaccurate information in 
their credit reports and to promote the accuracy, fairness, and privacy of consumer information contained in 
the files of consumer reporting agencies. FCRA regulates the collection, dissemination, and use of consumer 
information for credit purposes as well as for activities such as employment, insurance, and housing. It is im-
plemented by the Consumer Financial Protection Bureau through Regulation V (codified at 12 C.F.R. Part 1022). 

Fair Housing Act (FHA): The Fair Housing Act refers to Titles VIII and IX of the Civil Rights Act of 1968 (codified 
at 42 U.S.C. § 3601 et seq.), which prohibit discrimination concerning the sale, rental, and financing of housing 
based on race, religion, and national origin. These prohibitions were subsequently extended to include discrim-
ination based on sex, disability status, and family status. The Department of Housing and Urban Development 
implemented a portion of the FHA through a rule prohibiting practices with disparate impact. 

Feature: Feature refers to the variables in a dataset used to predict a target variable. This term is often used 
synonymously with input variable or independent variable and represented in mathematical notations as X.

Feature engineering: Feature engineering refers to various methods of preparing data for training in order to 
maximize the accuracy of the model, such as binning numerical variables into various ranges, creating ratios or 
other latent features that reflect the relationship between multiple inputs, or imputing values for missing data. 

Feature importance: Feature importance refers to how much impact an input variable has on the target 
variable in a model. Various post hoc explainability techniques are designed to identify and quantify feature 
importance within more complex models. 
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Feature selection: Feature selection refers to the process of determining which attributes in the dataset 
should be used in the machine learning model. 

Fitness-for-use: Fitness-for-use refers to the effectiveness of a model in serving its purpose, which can include 
model accuracy, fairness, and other factors, and the quality of the plan to appropriately manage risks related to 
operation of a particular model. Model risk management expectations require firms to determine that a model 
is fit for use prior to deployment. 

Global explainability: Global explainability refers to the ability to identify a model’s high-level decision- 
making processes and is relevant to evaluating a model’s overall behavior and fitness-for-use. 

Gradient-boosted decision trees (GBDTs): Gradient-boosted decision trees are a form of machine learning 
that combines multiple decision trees, each of whose target variable is the prediction error rate of the tree that 
came before. The weighted sum of each tree’s predictions gives the model’s final prediction. 

Hyperparameter: Hyperparameters refer to aspects of a machine learning model that are not learned from 
the data, but rather are determined by model developers, such as the number of nodes in a decision tree. 
Hyperparameters can affect the predictiveness and explainability of the model and are often adjusted during 
model tuning. 

Individual Conditional Expectations (ICE) Plots: Individual Conditional Expectation plots are common visu-
alization methods used in model development and are used as a feature importance explainability technique. 
These plots provide insight into feature interactions by displaying the relationship between each individual 
input and its predicted outcome. ICE plots show each instance or person in the dataset as a single line, where 
the value of the feature of interest varies. 

Inherently interpretable models: An inherently interpretable model specifies the contribution that each in-
put variable makes toward the output and enables stakeholders to understand its predictions without the use 
of secondary models, analyses, or methods. These models are also sometimes referred to as self-explanatory.

Input variable: Input variables refer to the variables in a dataset used to predict a target variable. This term is 
often used synonymously with feature or independent variable and represented in mathematical notations as X.

Integrated gradients: Integrated gradients are a feature importance explainability technique used to explain 
outputs from models such as a neural network or logistic regression where the change (or derivative) in output 
can be easily calculated. The gradients are summed to identify which feature has the most significant effect 
on the model’s predicted output, such that features with greater summed gradients have more importance to 
the model output. 

Interpretability: Model interpretability refers to the ability to understand a model’s operations based largely 
on its formal notation and without reliance on secondary models, analyses, or methods. To be interpretable, a 
person should be able to infer the following: (1) the types of information or input variables that a model uses, 
(2) the relationship between the input variables and the model’s predictions or outputs; and (3) the data con-
ditions for which the model will return a specific result (for example, to receive a credit score of 600, weekly 
income has to be at least $600).

Latent feature: Latent features are generated by a machine learning algorithm from variables in the dataset 
and serve as internal or interim analyses that help determine the model’s prediction. These can be derived 
through simple combinations of different attributes or more complex mathematical processes. In general, the 
greater the number of the latent features and the more difficult those relationships are to describe on their 
own, the more complex the model will be.

Linearity: In linear models, changes in a particular input produce a consistent rate of change in the output.
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Linear regression: Linear regression refers to a statistical technique where a modeler or algorithm locates the 
best-fit linear relationship between input variables and a target variable.

Local explainability: Local explainability refers to the ability to identify the basis for specific decisions made 
by a model. 

Local Interpretable Model-Agnostic Explanations (LIME): LIME is a feature importance explainability 
technique that uses local linear surrogate models around a particular data point to approximate a complex 
model’s output. The resulting local surrogate models are used to both explain the model’s behavior around 
individual data points and quantify feature importance for the overall model. LIME is generally used today as 
a baseline to compare the outputs and performance of other explainability tools against or to generate insight 
into feature importance.

Logistic regression: Logistic regression refers to a statistical technique where a modeler or algorithm locates 
the best-fit curve between input variables and a target variable.

Model debiasing: Model debiasing refers to a range of methods to reduce bias in a model’s predictions, either 
by transforming the input data, building a debiasing function into model training, or transforming a model’s 
output. Debiasing techniques vary based on the model’s use case, the data being used, model complexity, and 
other factors. 

Monotonicity: Monotonicity refers to a relationship that is one-directional (e.g., increasing the value of an 
input variable will always cause the output to increase or will always cause the output to decrease). Imposing 
monotonicity constraints can help model developers limit the complexity and improve the explainability of 
machine learning models. 

Neural network: Neural networks are a form of deep learning that consist of several hidden layers through 
which a model learns nonlinear patterns between features and the target variable. The model uses these pat-
terns to create new features from the input variables in each layer, ultimately arriving at the final layer, where 
a prediction is made. 

Non-financial alternative data: Non-financial alternative data refers broadly to data about a person’s activ-
ities that are not financial in nature or derived from financial data. Examples of such data include social media 
data, search histories, educational attainment, and mobile phone recharging habits. 

Overfitting: Overfitting occurs when a model is fitted too narrowly to the training data, which can hinder its 
accuracy when deployed if test or deployment data reflect conditions different than those observed in the 
training data. 

Parameter: Model parameters are settings in the model that are determined using the training data and which 
are fitted to the model. When the training is initialized, the parameters are usually set to a random value (or 
zero). As training progresses, these random values are updated using an optimization algorithm, which per-
forms a search through possible parameter values to learn and update the values. The final parameters that are 
determined at the end constitute the trained model. Examples of parameters are coefficients (or weights) of 
linear and logistic regression models, and in the case of neural networks, the parameters are the weights and 
the biases.

Partial Dependence Plots (PDP): Partial dependence plots (PD plots or PDPs) are common visualization 
methods used in model development and are used as a feature importance explainability technique. These 
plots depict a feature’s effect on a model’s predicted results. PD plots provide a global interpretation of more 
complex models. 
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Protected class: Like anti-discrimination statutes applicable in other areas, ECOA and FHA prohibit discrim-
ination against people based on a common characteristic. Such characteristics include race, color, religion, 
national origin, sex, marital status, disability status, family status, or age (provided the applicant has the 
capacity to contract); reliance on a public assistance program; or the good faith exercise of any right under 
certain federal consumer financial laws. 

Random forests: Random forest models combine multiple decision trees into a single predictive model to 
decrease variance and bias and/or to improve accuracy and predictions. 

Regression problem: A regression problem generally refers to a situation in which the target variable is con-
tinuous, such as a model that assigns a numeric score. These contrast with classification problems where the 
output variable is categorical or binary.

Regularization: Regularization is a regression method that limits the coefficient estimates of irrelevant fea-
tures in a model to zero or near zero. It is commonly used to reduce model complexity, manage overfitting risks, 
and to debias models. Regularization adds new terms—often called penalty terms—to the objective function in 
order to guide the optimization process toward a specified solution. For example, a model developer training an 
underwriting model which can draw on 1,000 features as inputs wants the final model to use a small number 
of features for predictions because that will simplify the task of producing explanations. To do this, he or she 
will add a regularization term to the objective function, which adds a penalty for each additional feature used 
by the model.

Reinforcement learning: Reinforcement learning trains a model on unlabeled data, identifies an action for 
each variable, and receives input from a human or other model that helps the model learn. It is generally not 
applicable to credit underwriting. 

Reject inference: Reject inference is an approach used by model developers to address biases that result from 
the absence of loan performance data for past applicants who were rejected or declined offers of credit. It 
uses data for approved applicants to statistically impute predicted values on those who were denied credit, 
which are then added to historical information for approved applicants to train an underwriting model. 

Robustness: Robustness refers to a model’s ability to make accurate predictions in conditions that differ from 
the conditions existent in the model’s training data. 

Semi-structured data: Semi-structured data refers to data that are not stored in a relational database, but 
still retains some structure. An example is bank account transaction records from banks’ online platforms that 
are obtained by screen scraping. Semi-structured data generally requires more cleaning than structured data 
prior to use. 

Shapley Additive Explanations (SHAP): Shapley Additive Explanation is a feature importance explainability 
method that is used to explain complex models. SHAP does this by indicating the contributions of particular 
features in changing a model’s outcome. It is similar to LIME in that it explains a model locally. This method 
measures feature importance by removing features from a data point and quantifying how much that affects 
the model's output. 

Sparsity: Sparsity refers to the limiting of features or input variables that a model relies on to make predic-
tions, such as through removing an input variable when it is highly correlated with another variable. Sparsity 
is one way to improve model transparency. 

Structured data: Structured or tabular data refers to data that are stored in a database in columns and rows. 

Surrogate models: Surrogate models refer to interpretable models that mimic and explain the behavior of 
more complex models. 
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Supervised learning: Supervised learning refers to a machine learning model that is trained using data that 
contains both inputs (e.g., prior bankruptcies) as well as a target measure (e.g., whether an individual ultimate-
ly defaulted on his or her loan). This is the most common learning approach used in credit underwriting. 

Support vector machines (SVMs): Support vector machines generate a best-fit separating line between 
observations in a dataset that belong to different classes. 

Target variable: A target variable is the dependent variable or output variable that a machine learning 
model predicts.

Training: Training refers to the stage in the model lifecycle when a learning algorithm analyzes data to identify 
relationships and rules relevant to predicting a specific target variable.

Training data: Training data refers to the data that is fed into and analyzed by a learning algorithm to produce 
a predictive model.

Transparency: Model transparency refers to the ability of various stakeholders in a model, including its devel-
opers, risk managers, and regulators, to access the information they need related to the model’s design, use, and 
performance. Model transparency is generally thought of as being necessary to establish the trustworthiness 
of models and is important in certain use cases to evaluate and document regulatory compliance. Transparency 
can potentially be achieved through constraints that make a model more interpretable, post hoc explainability 
techniques, or a combination of both. 

Tuning: Tuning refers to the stage in the model lifecycle that involves adjusting hyperparameters of a model 
to maximize performance. It can occur in conjunction with validation and testing. 

Unlabeled data: Unlabeled data refers to data that excludes the target variable and can be used in models 
that use unsupervised or reinforcement learning. 

Unstructured data: Unstructured data are neither organized in a particular way nor stored in a database, 
including information stored in text or image formats. Examples include information stored in text formats, 
audio files, video files, and images, which includes most social media data.

Unsupervised learning: Unsupervised learning detects patterns in data without the inclusion of a target 
variable and can be used to find similarities between observations in a dataset. Such learning is commonly 
used for purposes of customer segmentation in marketing as well as for image recognition models. 

XGBoost: Extreme Gradient Boosting (XGBoost) is a type of tree-based machine learning model that is gen-
erated using an open-source package in both R and Python that relies on gradient boosting and is popular for 
use in developing underwriting models. The package has been enhanced to expedite the model training process 
by addressing overfitting risk, removing irrelevant information from the model, imputing missing values, and 
applying explainability techniques. 
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As discussed in Section 2, questions about how existing prudential and consumer protection 
laws and regulations apply to machine learning underwriting models are a source of uncertainty 
for lenders and other stakeholders. This appendix provides an overview of the core purposes and 
requirements in three such areas: model risk management, fair lending, and adverse action report-
ing.250 It also summarizes key debates related to those expectations in the context of machine 
learning underwriting models. 

B.1 Model Risk Management 
Federal prudential regulators have issued extensive guidance outlining their expectations for 

steps that banks should take in developing, monitoring, and using models throughout all aspects 
of their operations. This guidance applies broadly to the range of model use cases that might cre-
ate unexpected losses, compliance problems, or other negative outcomes for the firm and calls for 
enterprise-wide risk management processes including governance, policies, and controls.251 Expec-
tations are calibrated to the degree of risk posed by the particular use case, and credit underwrit-
ing is often considered to be among the highest risk activities depending upon the composition of 
the particular firm’s business. Thus, for financial institutions subject to prudential oversight, these 
expectations typically require extensive pre-deployment review of credit models and monitoring 
during use, especially for firms that emphasize retail or consumer banking. For other financial 
institutions, bank regulatory expectations may broadly inform aspects of their model oversight 
practices in part because funding and securitization counterparties may require some of these 
processes and practices. 

The guidance defines a model to include any “quantitative method, system, or approach that 
applies statistical, economic, financial, or mathematical theories, techniques, and assumptions to pro-
cess input data into quantitative estimates.” Similarly, model risk includes “the potential for adverse 
consequences from decisions based on incorrect or misused model outputs and reports,” which can 
lead to financial loss, poor business and strategic decision-making, or damage to a bank’s reputation. 
Banks are expected to identify potential sources of such risk, assess their magnitude, and mitigate 
appropriately, both at the individual model level and in the aggregate across business lines and legal 
entities. In particular, higher degrees of risk management are expected where particular models pose 
greater risk—whether that risk derives from the model’s potential impact on customers or the firm, 
methodology, complexity, data usage, operational structure, or other factors. Where there is higher 

250   The appendix excludes consideration of how prohibitions on unfair, deceptive, and abusive acts or practices might be applied to the 
use of machine learning underwriting models, including to scenarios in which models lack sufficient transparency. See generally 15 U.S.C.  
§ 45(a)(1); 12 U.S.C. § 5531.

251   FRB, SR 11-7; OCC, Bulletin 2011-12; FDIC, FIL 22-2017.
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uncertainty about a particular model—about its inputs, assumptions, or methodology—model risk 
management programs will generally require heightened scrutiny before approving that model for 
use and more vigorous oversight of its operations.252

Because a wide variety of factors can cause financial loss, expose firms to regulatory sanction, 
or damage to a bank’s reputation, regulators expect model developers to consider and plan for the 
full range of risks related to the model’s use case. In the context of a credit underwriting model, 
this will typically include consideration of risk management issues related to both prudential and 
consumer protection requirements. For example, the risk that a model’s predictions will start to 
deteriorate due to changes in economic conditions is one component of model risk management, 
but the framework also incorporates risks from cybersecurity threats, data quality and scope issues, 
changes in customer behaviors and applicant pools or behaviors, compliance with more specific 
legal and regulatory requirements (including for consumer credit fair lending and adverse action 
notice disclosures as discussed further below), and more general reputational issues.

The prudential model risk management expectations emphasize various aspects of model trans-
parency. At a broad level, the guidance requires documentation of the processes by which a model is 
developed, validated, and monitored during deployment.253 More specifically, the guidance creates an 
expectation that developers will evaluate whether models are relying on relationships in the data that 
are intuitive and defensible with regard to the outcome that they are attempting to predict,254 that 
firms will conduct appropriate sensitivity analyses to establish the fitness of the model for use,255 and 
that lenders will establish appropriate processes for identifying and mitigating risks relevant to the 
model’s use, including compliance with applicable consumer protection laws.256 

In practice, the sophistication, scope, and resources of model risk management programs varies 
significantly across the banking sector. Many of the largest banks typically have specialized teams 
with the expertise and infrastructure not only to conduct comprehensive reviews of the documen-
tation submitted for validation, but also to develop and test their own models from the training 
data where warranted. In these firms, model developers can expect to defend every significant 
decision in model design and development prior to putting the model into use. By contrast, at 
smaller firms, model validation may be conducted by vendors or consist of a relatively streamlined 
peer review.

B.1.1 Key Issues 
While the model risk management guidance generally provides a principles-based framework 

that can be adapted to a wide variety of firms, models, and particular circumstances, stakeholders 
are currently debating whether elements need to be modified or expanded upon to provide more 
guidance to address issues raised by the use of machine learning in various applications, including 

252   FRB, SR 11-7 attachment at 3-4.
253   Id. attachment at 21 (“Without adequate documentation, model risk assessment and management will be ineffective. Documentation of 

model development and validation should be sufficiently detailed so that parties unfamiliar with a model can understand how the model 
operates, its limitations, and its key assumptions.”).

254   Id. SR 11-7 (evaluating conceptual soundness involves assessing “documentation and empirical evidence supporting the methods used 
and variables selected for the model [to] ensure that judgment exercised in model design and construction is well informed, carefully 
considered, and consistent with published research and with sound industry practice.”); id. attachment at 6 (“Developers should be able to 
demonstrate that such data and information are suitable for the model and that they are consistent with the theory behind the approach 
and with the chosen methodology.”); id. attachment at 11 (“Key assumptions and the choice of variables should be assessed, with analysis 
of their impact on model outputs and particular focus on any potential limitations. The relevance of the data used to build the model 
should be evaluated ….”).

255   Id. attachment at 11-13 (stating that sensitivity analyses should be performed during both development and deployment).
256   Id. attachment at 17-18.
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credit underwriting.257 For example, some stakeholders have suggested that some of the guidance’s 
language concerning sensitivity testing may not be sufficiently calibrated to how such processes 
are performed in machine learning contexts.258 Others have suggested there are potential discrep-
ancies in the standards applied to traditional linear models and more complex AI and machine 
learning models.259  

As discussed in Section 2.3.1, one of the ways in which the transition to machine learning poses 
a particular transparency-related issue concerns lenders’ efforts to detect in timely ways conditions 
that may reduce the accuracy of machine learning models given their tendency to overfit to training 
data. The emergence of various post hoc explainability techniques may enable lenders to improve 
their ability to recognize and respond to conditions in which the performance of machine learning 
underwriting models might rapidly deteriorate. In validation processes, this points to several addi-
tional potential inquiries: what approach has the model developer taken to enabling transparency, 
does that approach confer appropriate levels of transparency in practice, and how can the reliability 
and trustworthiness of information produced to explain the model be evaluated.

B.2 Fair Lending 
Lenders are subject to broad anti-discrimination requirements regardless of the type of model 

they use to predict an applicant’s likelihood of default. The Equal Credit Opportunity Act (ECOA) 
prohibits discrimination in “any aspect of a credit transaction” for both consumer and commercial 
credit on the basis of race, color, national origin, religion, sex, marital status, age, or certain other 
protected characteristics.260 The Fair Housing Act (FHA) prohibits discrimination on many of the 
same bases in connection with residential mortgage lending.261 

Fair lending enforcement actions and lawsuits are generally brought on two grounds.262 Disparate 
treatment focuses on whether creditors have treated applicants differently based on protected char-
acteristics, and generally prohibits consideration of race, gender, or other protected characteristics 
in underwriting and scoring models.263 While intentional discrimination is pursued under this theory, 
disparate impact addresses lenders’ use of facially neutral practices that have a disproportionately 
negative effect on protected classes, unless those practices meet a legitimate business need that 
cannot reasonably be achieved through less impactful alternatives.264

257   Further, the kinds of fair lending issues considered below will be important substantive model risk management considerations for under-
writing models.

258   Zest AI, Here’s How ML Underwriting Fits Within Federal Model Risk Management Guidelines (May 30, 2019).
259   Model Risk Managers' International Association, Response to Agencies’ Request for Information and Comment on Financial Institutions’ 

Use of Artificial Intelligence, Including Machine Learning, 19 (May 25, 2021).
260   15 U.S.C. § 1691(a) (also prohibiting discrimination based on the receipt of public assistance and the good faith exercise of certain rights 

under federal consumer financial law).
261   42 U.S.C. § 3605 (prohibiting discrimination on the basis of race, color, national origin, religion, sex, familial status or disability).
262   The Supreme Court has confirmed that both doctrines are available under the Fair Housing Act, but has not yet ruled on whether dis-

parate impact analysis applies under ECOA. Texas Dep’t of Housing & Community Affairs v. Inclusive Communities Project, Inc., 576 U.S. 
519 (2015). Federal regulations, agency guidance, and lower court decisions have recognized the doctrine under ECOA for decades, in part 
based on legislative history. See, e.g., 12 C.F.R. § 1002.6(a); id. Supp. I, cmt. 1002.6(a)-2. 

263   Federal law does allow lenders to consider factors such as whether an applicant is of sufficient age to form binding contracts under state 
law and whether state laws regarding marital property affect their ability to repossess collateral. 15 U.S.C. § 1691(b). Models can also use 
applicants’ age as a predictive variable under narrowly restricted circumstances involving “an empirically derived, demonstrably and 
statistically sound, credit scoring system” if the model does not assign a negative value to the age of older applicants. Id. § 1691(b)(3); 12 
C.F.R. § 1002.6(b)(2).

264   For a general overview of the two theories and the ways that they overlap, see Evans.
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Disparate impact analysis typically follows a three-part test that was developed in the context 
of employment law:265

 »  Adverse Impact: A plaintiff (such as a consumer or a regulatory agency) must make an 
initial showing that a particular act or practice causes a disproportionate adverse effect on 
a prohibited basis. In the credit context, this is typically analyzed by looking at whether use 
of particular variables or other lending practices cause approval rates or pricing patterns to 
differ by race, gender, or other protected characteristics.

 »  Business Justification: In response, the creditor must then show that the practice furthers 
a legitimate business need, such as whether the variable helps to predict the risk of default. 

 »  Less Discriminatory Alternative: In response, to prevail on a claim, the plaintiff must 
demonstrate that the legitimate business need cited by the creditor can reasonably be 
achieved by using an alternative practice that would have less adverse impact. 

Factors that are closely correlated with protected class characteristics (which are often called 
proxies) can be relevant to both disparate treatment and disparate impact analyses. For instance, 
since collecting data about protected class status and factoring such information into a credit under-
writing model are generally prohibited, a party that intends to discriminate against a particular 
group might incorporate a factor that is closely related to a protected characteristic into its model 
instead. A factor that is correlated with protected class status may also have a disproportionately 
negative effect on approvals or pricing among different protected classes, leading to further inquiry 
under disparate impact theories as to what need is being served by use of the factor and whether 
another variable could be substituted in its place. Accordingly, both doctrines as applied to auto-
mated underwriting models focus in substantial part on analyzing data inputs. 

Statistical tests can also be important under both theories, and more generally when lenders 
set out to evaluate their degree of fair lending compliance risk in adopting or changing their under-
writing models. However, case law and regulatory guidance do not provide precise mathematical 
thresholds for determining the level of problematic disparities. For instance, while federal agencies 
in the employment context have sometimes used a rule of thumb that hiring rates for women and 
applicants of color should be at least 80% of the rates for men and Whites, respectively,266 that 
benchmark has not been formally recognized in financial services. Financial regulatory guidance 
concerning what constitutes a legitimate business need focuses on whether there is a “demonstra-
ble relationship” between the variable or requirement and credit risk but does not specify particular 
quantitative evaluation methodologies or thresholds.267 As a result, firms make decisions about 
tradeoffs between reducing disparities and negatively affecting model performance based on their 
own business judgment and risk tolerance.

265   In litigation, the burden shifts back and forth between the parties to make particular showings at each stage. However in other contexts, 
such as where a lender’s compliance team is applying this analysis to monitor its fair lending risk, one party will perform each of the steps. 

266   See, e.g., Equal Employment Opportunity Commission, Office of Personnel Management, Department of Justice, Department of Labor, & 
Department of Treasury, Adoption of Questions and Answers to Clarify and Provide a Common Interpretation of the Uniform Guidelines 
on Employee Selection Procedures, 44 Fed. Reg. 11996 (Mar. 2, 1979).

267   12 C.F.R. pt. 1002, Supp. I, cmt. 1002.6(a)-2; see also Office of the Comptroller of the Currency, Bulletin 1997-24, app. at 11 (May 20, 1997) 
(focusing on whether credit scoring variables are statistically related to loan performance and have an understandable relationship to 
creditworthiness).
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B.2.1 Key Issues
While existing fair lending law provides a conceptual framework for considering the fairness of 

machine learning underwriting models that is lacking in some other sectors, stakeholders are debat-
ing whether additional guidance is needed to address issues raised by machine learning techniques 
and more fundamentally whether certain existing approaches can work in the context of machine 
learning models. 

For instance, the identification and management of variables that may proxy for protected class 
status under both theories of discrimination can be significantly more complicated when lenders 
use machine learning underwriting models, particularly where those models may use data from 
more varied sources or in more complex or unintuitive features. Machine learning models may also 
effectively reverse-engineer protected class status from correlations in data, even though consider-
ation of such status is prohibited.268 Thus, lenders and regulators may need new tools and face new 
limitations in efforts to diagnose bias.269

In this context, some stakeholders are questioning whether reconsidering the prohibition on the 
use of protected class characteristics could improve the fairness and accuracy of machine learning 
underwriting models.270 In its broadest form, this could involve use of protected class information 
to develop race-, gender- or age-specific underwriting models,271 although more research is needed 
to understand the fairness and other effects of such approaches generally and in the context of 
diversified credit information.272 A less sweeping reconsideration could enable use of protected class 
characteristics to debias machine learning underwriting models prior to their deployment.273 In one 
approach, adversarial models—models designed to estimate an applicant’s protected class charac-
teristics based on the underlying model’s prediction—have proven generally effective in decreasing 

268   See Gabbrielle M. Johnson, Proxies Aren’t Intentional, They’re Intentional, 2-4 (2021) (Unpublished manuscript) (arguing that machine 
learning algorithms have the capacity to “learn,” be “aware” of, and make decisions on the basis of protected class characteristics by 
picking up on redundant encoding in the data and using proxies to meaningfully reason about or explicitly represent protected class 
characteristics, even when those characteristics are not available or provided as model inputs); see also Gillis.

269   For overviews of some of the issues raised by both data and machine learning models, see Evans; Federal Trade Commission, Big Data at 
27-32; Barocas & Selbst; Gillis; Gillis & Spiess; Hellman. 

270   Hellman, at 865 (recognizing that “[i]f algorithms use protected traits in a limited way to determine which other traits to consider within 
the algorithm, overall accuracy can be improved”); Model Risk Managers’ International Association (“Tests that rely in the correlation of 
last names to ethnicity are weak and will only become weaker, Further, they say little about a range of discrimination risks. The only 
possible solution is for the government to change the laws around collecting protected class status. This is the single greatest obstacle 
to using machine learning on alternate datasets.”); see also Barocas & Selbst; Jason R. Bent, Is Algorithmic Affirmative Action Legal? 108 
Georgetown L. J. 803-853 (2020) (considering statutory and constitutional arguments for “race-aware affirmative action in the design of 
fair algorithms”).

271   Hellman at 846-864, 865-866 (recognizing that Constitutional law does not rule out using protected class characteristics in a limited way 
that may help to determine how courts should evaluate the use of race in algorithms when racial classifications are used to improve 
overall accuracy).

272   A recent study in the context of mortgage lending modelled the predictiveness gains from improving the robustness of credit files and 
compared those gains to the performance of group-specific underwriting analyses. This evaluation suggests that inaccurate predictions 
of creditworthiness of low-income applicants and other historically underserved groups result more from statistical noise in available 
credit information—errors that might cause a credit score to over- or understate the risk of default in different cases—rather than errors 
that are easier to fix with modelling adjustments because they skew predictions in a single direction. The authors find that applying more 
specialized modelling analyses to traditional data sources may not overcome the challenges of providing credit to underserved groups, 
and instead emphasize the potential benefits of improving and expanding data sources. Blattner & Nelson. 

273   A coalition of consumer advocacy groups and civil rights organizations have requested that the federal financial services regulators pro-
vide more detailed regulatory guidance on various techniques that have the potential to improve model fairness and their compliance 
with fair lending laws, including the use of protected class information in model training as a way to decrease discrimination in lending 
and other financial services. National Fair Housing Alliance, Response to Agencies’ Request for Information and Comment on Financial 
Institutions’ Use of Artificial Intelligence, Including Machine Learning (July 1, 2021).
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bias in certain circumstances, although more research is needed in financial services applications 
such as credit underwriting.274 These techniques are discussed further in Section 5.3.

B.3 Adverse Action Notices 
ECOA and the Fair Credit Reporting Act both require lenders to disclose their reasons for denying 

credit applications or taking other “adverse actions,” and FCRA requires similar notices when lenders 
offer less favorable terms to consumers based on information in their credit reports.275 These disclo-
sures, which are commonly referred to as adverse action notices, are outcome-based explanations 
that provide “a description of the facts that proved relevant to a decision, but not a description of 
the decision-making rules themselves.”276

The requirements were adopted in the 1970s as part of broader efforts to promote the correction 
of errors in credit reports and to prohibit discrimination, but were controversial due to concerns about 
burdens on creditors.277 The laws and implementing regulations give lenders substantial latitude as to 
how they determine which factors to highlight, and do not require them to explain how the factors 
affected the lenders’ decisions. For instance, while the “principal reasons” provided under ECOA must 
“relate to and accurately describe the factors actually considered or scored by a creditor,” regulatory 
guidance states that the disclosure need not describe how or why a factor adversely affected an appli- 
cant or how a factor considered in a credit scoring system relates to predictions of creditworthiness. 
The guidance also emphasizes that the law does not require any particular method for determining 
which factors relating to a credit scoring model should be listed.278

In practice, most lenders rely heavily on a list of sample reasons that is provided in an appendix 
to the ECOA regulations to satisfy the requirements of both statutes.279 Where lenders rely on a 
third-party credit scoring model to make underwriting decisions, the “reason codes” are often gen-
erated automatically by consumer reporting agencies and model developers to simplify production 
of the notices. For lenders’ proprietary models, methodologies for determining which reasons to list 

274   With the aim of mitigating gender bias, a recent study created an adversarial model using census data to predict whether an individual fell 
into one of two income brackets and found that this method only slightly decreased the overall accuracy of the predictive model while 
nearly achieving equality of odds between males and females. See Zhang et al.

275   The laws define “adverse action” to include denials of credit applications on substantially the same terms and in substantially the 
same amount as requested, unless the lender makes a counter-offer. Adverse actions also include unfavorable decisions on existing 
credit arrangements, such as negative changes in terms, denials of line increases, and reductions or cancellations of credit lines. 15 U.S.C.  
§§ 1681a(k)(1), 1691(d)(6). In 2011, a FCRA amendment took effect to require similar risk-based pricing notices where credit terms are “mate-
rially less favorable” than the terms granted to a “substantial proportion” of other consumers. 15 U.S.C. § 1681m(h); 12 C.F.R. §§ 222.70-.75. 
ECOA’s disclosure requirements apply to both consumer and commercial credit, although some details are different for business applicants. 
Federal agencies have excluded business credit from FCRA’s disclosure requirements. 15 U.S.C. § 1681a(c); 12 C.F.R. §§ 222.70(a)(2), 1002.9(a). 

276   Selbst & Barocas at 1100.
277   Adverse action notices were a part of FCRA’s initial framework in 1970 to empower consumers to correct errors in their credit reports. In 

1976, ECOA was amended to require lenders to provide both a statement that discrimination is prohibited by law and a specific description 
of the “principal reason(s)” for taking the adverse action. 15 U.S.C. § 1691(d). For historical background, see, e.g., David C. Hsia, Credit Scoring 
and the Equal Credit Opportunity Act, 30 Hastings L. J. 371 (1978); Ralph J. Rohner, Equal Credit Opportunity Act, 34 Bus. Law. 1423 (1979); 
Winnie F. Taylor, Meeting the Equal Credit Opportunity Act’s Specificity Requirement: Judgmental and Statistical Scoring Systems, 29 Buff. 
L. Rev. 73 (1980). 

278   12 C.F.R. § 1002.9(a)(2), (b); id. pt. 1002, supp. I, cmt. 9(b)(2)-2, -3, -4, -5. Similarly, where a lender has taken adverse action based on infor-
mation in a consumer’s credit report, the FCRA requires disclosure of “key factors,” which are defined as “relevant elements or reasons 
adversely affecting the credit score for the particular individual, listed in the order of their importance based on their effect on the credit 
score.” However, the law does not define a methodology for determining relative importance or effects. 15 U.S.C. § 1681g(f)(1), (2)(B), (9). 
FCRA generally limits the number of key factors to be disclosed at four; regulatory guidance under ECOA indicates that more than four 
reasons are rarely helpful. Id. §§ 1681g(f)(1), (9); 12 C.F.R. pt. 1002, supp. I, cmt. 9(b)(2)-1. 

279   12 C.F.R. pt. 1002, App. C. The list is based on historically common underwriting factors and actually does provide some explanation for many 
of the items listed, such as “Income insufficient for amount of credit requested,” “Insufficient number of credit references provided,” and 
“Unacceptable type of credit references provided.” Others such as “Length of employment” and “Length of residence” are more general. Id. 
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on an adverse action notice may vary depending on the circumstances. For example, the regulatory 
guidance specifically permits lenders to benchmark against either applicants whose total score was 
at or slightly above the minimum passing score or against the average for all applicants in determin-
ing the factors on which the individual applicant performed least well, and specifically notes that 
other methodologies may be acceptable.280 

B.3.1 Key Issues
Although the applicable laws provide substantial flexibility to firms, lenders report that uncer-

tainty about complying with adverse action requirements does shape and sometimes chill adoption 
of nontraditional data sources and machine learning methodology.281 Explaining particular variables 
that are influential in machine learning models can be difficult where the models develop and rely 
on relationships that are inherently complex, non-intuitive, difficult to assess, large in number, or 
dependent on other input variables or relationships. And while the existing list of sample reasons 
provides some high-level wording with regard to traditional underwriting factors such as income 
and past credit defaults, it has not been updated to address less traditional data sources such as 
analyzing balance patterns in consumers’ checking or other transaction accounts. 

However, as data scientists and other stakeholders have worked to facilitate the generation of 
adverse action notices for machine learning models and new data types, they have helped to fuel 
policy conversations about how to make the notices more useful to consumers. The discussion has 
focused in particular on providing more actionable information to highlight ways that applicants 
can change their financial behavior to increase the likelihood of more favorable credit decisions 
in the future. Some stakeholders argue that the growth of open-source and other tools for more 
transparent and interpretable machine learning models have given lenders new options to satisfy 
adverse action reporting requirements in a more effective way.282 

280   12 C.F.R. pt. 1002, supp. I, cmt. 9(b)(2)-5.
281   Parrish, Alternative Data and Advanced Analytics (reporting that surveyed industry executives view adverse action disclosures as the 

most significant challenge for using AI and machine learning in underwriting); Knight. 
282   BLDS, LLC et al. at 9, 15-18.
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APPENDIX C 
Additional Fairness Metrics

As highlighted in Section 5.2, academic and industry research on machine learning has produced 
a robust list of mathematical approaches to measuring the fairness of algorithmic models. In the 
context of lending, these metrics can potentially function as part of model developers’ toolkits at 
various ages of the model development process or be used in the context of fair lending analyses. 
Tables C.1-C.3 supplement the discussion of a subset of these metrics in the report to provide a more 
complete sense of this body of research. Many of the same limitations explored in Section 5.2 also 
apply to these options.

This appendix provides an overview of 21 fairness metrics (Tables C.1-C.3),283 including narrative 
descriptions and mathematical notations. Metrics denoted in bold font and asterisks are described 
in depth in Section 5.2.1.

TABLE C.1   GLOBAL MATHEMATICAL NOTATION GUIDE

P refers to probability

d  refers to the predicted decision (for approval of credit)

G  refers to gender (which can be either m [male] or f [female])

X refers to a set of control variables

Y  refers to the actual classification result of an applicant

Ŷ  refers to the predicted classification result of an applicant

S refers to the predicted probability score

E  refers to the expected value of predicted probability assigned by the classifier

k  refers to a distance metric between individuals

K  refers to a distance metric between a distribution of outputs

Z refers to equal average probability score

A refers to a set of attributes

283   These metrics are adapted from Pessach and Shmueli (2020) and Verma and Rubin (2018). See Dana Pessach & Erez Shmueli, Algorithmic 
Fairness, arXiv preprint arXiv:2001.09784 (Jan. 21, 2020); Sahil Verma & Julia Rubin, Fairness Definitions Explained, FairWare’18: Proceedings 
of the IEEE/ACM International Workshop on Software Fairness at 1-7 (May 29, 2018).
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The following statistical metrics are needed to compute statistical measures of fairness:

TABLE C.2   STATISTICAL METRICS FOR STATISTICAL MEASURES OF FAIRNESS284

True positive (TP): A case when the predicted and actual outcomes are both in the positive class

False positive (FP): A case predicted to be in the positive class when the actual outcome belongs to 
the negative class

False negative (FN): A case predicted to be in the negative class when the actual outcome belongs to 
the positive class

True negative (TN): A case when the predicted and actual outcomes are both in the negative class

Positive predictive value (PPV): The fraction of positive cases correctly predicted to be in the positive 
class out of all predicted positive cases, TP/(TP+FP)

Negative predictive value (NPV): The fraction of negative cases correctly predicted to be in the 
negative class out of all predicted negative cases, FN/(TN+FN)

For the fairness metrics derived from causal reasoning (i.e., causal discrimination, counterfactual 
fairness, no unresolved discrimination, no proxy discrimination, and fair inference), a causal graph— 
a directed graph that contains attributes and associated relationships between the attributes and 
is used for building classifiers and other machine learning algorithms—has been provided below in  
Figure C. This causal graph maps the relationship between credit amount, credit history, income 
amount, the protected attribute G, and the predicted outcome d.

FIGURE C   RELATIONSHIPS AMONG ATTRIBUTES

G (proxy) Income  
Amount d Credit  

History

Credit 
Amount

284   Verma & Rubin at 2-3.
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TABLE C.3   STATISTICAL METRICS FOR STATISTICAL MEASURES OF FAIRNESS285

C.1 Statistical Measures

MEASURE TYPE MEASURE DESCRIPTION MATHEMATICAL NOTATION
GROUP DEMOGRAPHIC / 

STATISTICAL PARITY*
Demographic or statistical parity is 
achieved when the probability of a 
predicted positive outcome is the same 
across subpopulations within a dataset, 
such as protected class groups.

P(d = 1 | G = m) = P(d = 1 | G = f)

CONDITIONAL  
STATISTICAL PARITY*

Conditional statistical parity is achieved 
when the probability of a predicted 
positive outcome is the same across 
protected class groups, once a set of 
designated control variables has been 
accounted for.

P(d = 1 | X = x, G = m) = P(d = 1 | X = x, G = f),  
where x refers to a given control variable

EQUAL OPPORTUNITY Equal opportunity is achieved when 
true positive rates are the same across 
protected class groups.

P[Ŷ = 1 | G = f, Y = 1] − P[Ŷ = 1 | G = m, Y = 1] ≤ ε

PREDICTIVE PARITY* Predictive parity is achieved when the 
PPV is the same across protected class 
groups.

P(Y = 1 | d = 1, G = m) = P(Y = 1 | d = 1, G = f)

FALSE POSITIVE ERROR  
RATE BALANCE /  
PREDICTIVE EQUALITY

False positive error rate balance or 
predictive equality is achieved when the 
same false positive rates are observed 
across protected class groups.

P(d = 1 | Y = 0, G = m) = P(d = 1 | Y = 0, G = f)

FALSE NEGATIVE ERROR  
RATE BALANCE

False negative error rate balance is 
achieved when the same false negative 
rates are observed across protected class 
groups.

P(d = 0 | Y = 1, G = m) = P(d = 0 | Y = 1, G = f)

EQUALIZED ODDS* Equalized odds are achieved when true 
positive rates and false positive rates are 
the same across protected class groups.

P(d = 1 | Y = i, G = m) = P(d = 1 | Y = i, G = f), 
i ∈ 0, 1

CONDITIONAL USE  
ACCURACY EQUALITY

Conditional use accuracy equality is 
achieved when the same PPV and NPV 
are observed across protected class 
groups.

(P(Y = 1 | d = 1, G = m) = P(Y = 1| d = 1, G = f)) ∧  
(P(Y = 0 | d = 0, G = m) = P(Y = 0 | d = 0, G = f))

OVERALL  
ACCURACY EQUALITY

Overall accuracy equality is achieved when 
prediction accuracy is the same across 
protected class groups.

P(d = Y, G = m) = P(d = Y, G = f)

TREATMENT EQUALITY / 
ERROR RATE BALANCE

Treatment equality or error rate balance is 
achieved when the ratio of false negatives 
and false positives is the same across  
protected class groups.

(FN/FP, G = m) = (FN/FP, G = f)

285   Verma & Rubin at 2-3.
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MEASURE TYPE MEASURE DESCRIPTION MATHEMATICAL NOTATION
GROUP CALIBRATION /  

TEST-FAIRNESS*
Calibration is achieved when for any 
predicted probability score S, subjects 
across protected class groups have equal 
probability to truly belong to the positive 
class.

P(Y = 1 | S = s, G = m) = P(Y = 1 | S = s, G = f), 
for all s in (0, 1)

WELL-CALIBRATION Well-calibration is achieved if, for any 
predicted probability score S, subjects 
across protected class groups should not 
only have an equal probability to truly 
belong to the positive class, but this 
probability should be equal to S. That 
is, if the predicted probability score is s, 
the probability of both male and female 
applicants to truly belong to the positive 
class should be s.

P(Y = 1 | S = s, G = m) = P(Y = 1 | S = s, G = f) = s,  
for all s in (0, 1)

BALANCE FOR  
THE POSITIVE CLASS

Balance for the positive class is achieved 
if subjects constituting the positive class 
across protected class groups have equal 
average predicted probability score Z.

E(Z | Y = 1, G = m) = E(Z | Y = 1, G = f)

BALANCE FOR  
THE NEGATIVE CLASS

Balance for the negative class is achieved 
if subjects constituting the negative class 
across protected class groups have equal 
average predicted probability score Z.

E(Z | Y = 0, G = m) = E(Z | Y = 0, G = f)

C.2 Similarity-Based Measures

MEASURE TYPE MEASURE DESCRIPTION MATHEMATICAL NOTATION
INDIVIDUAL FAIRNESS THROUGH 

UNAWARENESS*
Fairness through unawareness is achieved 
as long as protected class attributes are 
not included in the training and deploy-
ment datasets for classification.

Ai = Aj -> di = dj  
where i and j are two individuals  
with the same set of attributes

FAIRNESS THROUGH 
AWARENESS*

Fairness through awareness is achieved 
when individuals who are similar along 
various characteristics as defined by a 
distance metric—where the distance 
between the distributions of outputs for 
individuals should be at most the distance 
between the individuals—receive similar 
classifications, irrespective of their  
protected class features.

K(d(m), d(n)) <= k(m, n)
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C.3 Causal Reasoning Measures

MEASURE TYPE MEASURE DESCRIPTION MATHEMATICAL NOTATION
INDIVIDUAL CAUSAL  

DISCRIMINATION
Causal discrimination is achieved if the 
same classification is produced for two 
subjects with the same exact attributes X.

Xf = Xm ∧ Gf ! = Gm -> df = dm

COUNTERFACTUAL 
FAIRNESS*

A counterfactually fair causal graph 
is achieved if the predicted outcome 
d in the graph does not depend on a 
descendant of the protected attribute 
G. In Figure C, d is dependent on credit 
history, credit amount, and income 
amount. As the income amount is a 
direct descendant of G, the causal model 
is not counterfactually fair.

Please refer to Figure C

NO UNRESOLVED 
DISCRIMINATION

A causal graph with no unresolved 
discrimination is achieved if there exists 
no path from the protected attribute G 
to the predicted outcome d, except via 
a variable that is influenced by the pro-
tected attribute in a non-discriminatory 
manner.

Please refer to Figure C

NO PROXY  
DISCRIMINATION

A causal graph free of proxy discrimina-
tion is achieved if there exists no path 
from the protected attribute G to the 
predicted outcome d that is blocked by a 
proxy variable.

Please refer to Figure C

FAIR INFERENCE A causal graph satisfying n fair inference 
is achieved if there are no illegitimate 
paths from the protected attribute G to 
the predicted outcome d.

Please refer to Figure C
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