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1. INTRODUCTION
Every week, machine learning underwriting models are determining the outcomes of credit 

applications submitted by hundreds of thousands of consumers and small business owners.1 While 
the underlying technologies and data are less complex than ChatGPT and other high-profile forms 
of artificial intelligence (AI), the use of machine learning (ML) for such important decisions still raises 
fundamental questions about whether we have adequate toolkits for building, understanding, and 
managing models that are reliable and fair.2 

The stakes in the credit context are high. ML underwriting models’ greater accuracy and capacity 
to analyze large datasets (particularly new, more inclusive sources of information) have the potential 
to increase access to credit for millions of people who are difficult to assess using traditional models 
and data. This underserved population includes disproportionately high numbers of Black, Hispanic, 
and lower income consumers. For instance, about 20% of U.S. adults lack sufficient traditional credit 
history to generate scores under the most widely used models, with almost 30% of Black and Hispanic 
consumers lacking such scores compared to about 16% of Whites and Asian-Americans.3 

Yet the very quality that fuels ML models’ greater predictive power—their ability to detect more 
complex data patterns than prior generations of underwriting models—makes them more difficult 
to understand and increases concerns that they could exacerbate inequalities and perform poorly in 
changing data conditions.4 The complexity of many ML models has caused transparency to emerge 
as an urgent threshold question for both lenders and regulators in evaluating whether individual 
models are safe, fair, and reliable.5 For example, many stakeholders are concerned that if users can-
not assess whether an underwriting model relies on strong, intuitive, and fair relationships between 
an applicant’s behavior and creditworthiness, it may be more difficult to diagnose and mitigate 
performance and fairness issues or to determine compliance with regulatory requirements. 

New data science techniques—often themselves involving machine learning or other complex 
computational methodologies—have emerged both to explain ML models’ operation and to manage 
concerns about their fairness and reliability. These include both post hoc explainability techniques 
that analyze key aspects of model behavior and debiasing techniques that can be used to reduce 
racial or other disparities in model predictions. Many vendors that are providing ML platforms and 
services to lenders have incorporated these techniques into their proprietary tools for diagnosing, 
managing, and monitoring ML models. But the techniques and tools also raise questions about 
whether and how to use them appropriately both to manage models and to perform regulatory 
compliance tasks in the credit context.6 

To study these questions, FinRegLab has conducted extensive market context interviews, per-
formed empirical analyses with Professors Laura Blattner and Jann Spiess of the Stanford Graduate 
School of Business, and engaged with a broad range of stakeholders. This Policy Analysis is the fourth 
in our series of research reports, and elaborates on a Policy & Empirical Findings Overview that we 
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released in July 2023.7 The analyses presented below build on our prior workstreams, including the 
deliberations of three working groups that FinRegLab convened to solicit insights from more than 75 
subject matter experts including representatives of lenders, data and technology companies, advo-
cacy organizations, and research institutions. Stakeholder discussions shaped our understanding of 
various issues, but our reports reflect FinRegLab’s independent analysis in all respects.

As discussed further below, we find that: 

 »  Some post hoc explainability techniques can provide reliable information about 
key aspects of model behavior, but stakeholders are still debating their appro-
priate use and sufficiency. Our empirical research evaluated use of various techniques 
and tools to perform tasks relating to generating individualized consumer disclosures, 
managing fair lending risks, and conducting general governance activities. We found that 
some techniques provided reliable information about key aspects of model behavior, 
though there was no “one size fits all” technique or tool that performed the best across 
all regulatory tasks. Our results emphasize the importance of choosing the right explain-
ability tool for the particular ML model and task, deploying it in a thoughtful way, and 
interpreting the outputs with an understanding of the underlying data. 

As stakeholders work to develop standards for the appropriate deployment of explain-
ability techniques, the analytical framework we developed for our research project may 
be useful for evaluating the performance of tools in different settings. Additional research 
could also be useful to inform continuing stakeholder debates about the tradeoffs in 
performance and simplicity between using post hoc techniques and imposing upfront 
constraints on model architecture to create greater transparency. Beyond methodological 
and process issues, stakeholders are also debating whether the information produced by 
post hoc techniques is sufficiently equivalent to what can be generated about more tradi-
tional models to be relied upon for various business and compliance functions. 

 »  The transition to machine learning has the potential to improve fairness and inclu-
sion, in part by giving lenders a more robust toolkit for mitigating disparities. 
Despite the focus on transparency as a threshold issue for ML models as discussed above, in 
our empirical research the most powerful approaches to managing fairness did not necessarily 
hinge upon explaining the inner workings of the model as an initial step. Instead, we found that 
automated approaches that generated a range of alternative models produced options that 
had greater predictive accuracy and smaller demographic disparities than traditional strategies 
that assessed which input features made the biggest contribution to disparities and then omit-
ted or made narrow adjustments to those individual features.

Further research could help inform implementation choices for different techniques and 
evaluation of the different model alternatives that they produce for robustness and other 
considerations. Public policy questions regarding fair lending compliance have also taken 
on additional urgency in light of the adoption of ML models. Absent greater regulatory 
certainty, lenders have been hesitant to deploy certain debiasing techniques in particular 
ways because the techniques use data about race, gender, and other protected character-
istics differently than traditional mitigation approaches. The availability of new debiasing 
approaches has also highlighted outstanding questions about the nature and extent of 
lenders’ obligations to search for fairer models during the development process.

 »  Defining basic concepts and expectations could be a useful first step toward 
updating regulatory frameworks for the machine learning era. While ML technol-
ogies and our understanding of them are evolving rapidly, regulators can take steps now 
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to encourage responsible use. For instance, defining the key qualities of explainability tools 
and clarifying expectations about how and when lenders should search for fairer alternative 
models would increase consistency of practice and shape how lenders use their expanded 
toolkits in the ML context. And while existing model risk management guidance provides a 
flexible framework for governance that many other sectors lack, it does not apply to the full 
spectrum of lenders. Stakeholders see potential value in addressing governance concerns for 
particular subgroups of lenders and articulating basic elements that should be considered 
in determining whether particular ML models are “fit for use” in the underwriting context. 

The transition to machine learning models is likely to prove the largest evolution of automated 
underwriting systems in at least a generation. As the fairness research results illustrate, adjusting 
market practices and regulatory expectations to account for ML models could provide opportunities 
to address longstanding concerns about prior generations of predictive credit models and the compli-
ance frameworks that govern them. The transition may also provide opportunities to adjust existing 
underwriting systems to incorporate more inclusive data sources at relatively modest additional cost. 

Additional public research and stakeholder dialogue will be critical to inform and shape these changes, 
not only within the credit ecosystem but also with other sectors that are grappling with the responsi-
ble use of AI and ML models in sensitive use cases. At the same time, lessons from deploying machine 
learning and secondary tools in the credit context have the potential to inform governance activities in 
other sectors and the development of more effective techniques for understanding and managing AI/ML 
applications. FinRegLab has structured this research project with an eye toward facilitating cross-sector 
dialogues and will continue to do so as it researches AI/ML and data topics going forward.

* * *
This report is structured as follows: 

 »  Section 2 provides an overview of the shift toward machine learning underwriting models, 
including the opportunities and risks for inclusion and fairness from adoption of ML tech-
niques and non-traditional data sources, transparency challenges and tools for managing 
more complex models, and broader questions about the responsible use of ML models.

 »  Section 3 provides a brief summary of FinRegLab’s research project, including our empirical 
findings on explainability techniques and debiasing approaches.

 »  Section 4, Section 5 and Section 6 provide more detailed policy analyses of concerns and 
debates relating to the adoption of machine learning underwriting models in the context of 
three critical regulatory compliance areas for credit underwriting:

 › General risk management and model governance, particularly for banks.

 › Production of “adverse action” disclosures to certain credit applicants

 › Compliance with federal fair lending laws.

 »  Section 7 summarizes potential next steps for policymakers and other stakeholders as ML 
techniques and our understanding of them continue to evolve rapidly.

For reference, Appendix A lists the organizations whose employees participated in FinRegLab’s 
advisory board and/or policy working group discussions; Appendix B defines common terms and 
acronyms; and Appendix C summarizes recent published research on related topics. 
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2.  THE OPPORTUNITIES—AND CHALLENGES— 
OF MACHINE LEARNING UNDERWRITING MODELS
Lenders began using predictive models decades ago to forecast the likelihood that applicants 

would default on new loans, based largely on data from three nationwide credit bureaus and statistical 
techniques such as logistic regression.8 Borrowers and lenders have benefitted from use of automated 
underwriting systems in a variety of ways: reduced defaults, processing times, underwriting costs, and 
loan pricing; expanded access to credit; improved consistency of treatment of similarly situated bor-
rowers; and increased competition for borrowers.9 However, these benefits are not distributed evenly. 
For instance, the fact that about 20% of U.S. adults and nearly 30% of Black and Hispanic consumers 
lack sufficient traditional credit history to generate scores under the most widely used models means 
that they may be denied credit or charged higher prices not because they are high default risks but 
rather because they are difficult to assess.10 

As computational power and techniques have evolved and new sources of digital information 
have become more widely available, consumer and small business lending markets are facing the 
biggest evolution of automated underwriting systems in at least a generation. The use of machine 
learning algorithms to develop underwriting models is a core innovation that is being driven by the 
potential for substantial increases in predictive accuracy. While machine learning techniques can be 
applied to traditional credit history sources, they may be adopted at the same time that lenders 
adjust their systems to account for new types of data, such as the use of digital feeds of bank account 
information or other sources of cash-flow information. This combination of new data and techniques 
holds particularly promise for improving access to credit among historically excluded populations. 

Yet the very qualities of ML models that create the potential for improvement—their ability to 
detect more complex relationships in historical data and to process large amounts of information 
from diverse sources—also create concerns about our ability to understand, manage, and rely upon 
the resulting models. Stakeholders are particularly concerned about risks that the models could exac-
erbate historical disparities and may prove “brittle” in changing conditions, causing rapid declines in 
predictive performance.11 The models’ increased complexity further heightens concerns about model 
management and regulatory compliance, making transparency and explainability critical issues with 
regard to the pace, breadth, and nature of future adoption. 

This section summarizes (1) the shift to ML underwriting models; (2) its opportunities and risks for 
inclusion and fairness; (3) transparency challenges and tools for managing more complex models; and 
(4) broader debates about responsible use of ML models for credit underwriting. While the use of non- 
traditional data sources is not the primary focus of this report, Section 2.2.3 briefly discusses the ways in 
which incorporating new data sources can increase the potential benefits and challenges of ML adoption 
for greater financial inclusion.12 
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2.1 The Shift to Machine Learning Underwriting Models
Traditional credit scoring and underwriting models rely on a relatively limited number of inputs 

that are selected by human developers, who work to select combinations that both maximize overall 
predictive power and minimize correlations among inputs to simplify model operations. (See Box 2.1.1) 
While some companies have implemented more complex structures over time in pursuit of greater 
predictive power,13 processes for documenting and analyzing traditional models have benefitted from 
both the relative transparency of logistic regression and decades of usage. Regression models’ nota-
tion identifies both their input features and their weights,14 and commonly used statistical analyses 
have become widely accepted to measure the importance of individual features for various business 
and regulatory purposes.15 These include:

 »  General Risk Management and Model Governance: To protect the safety and sound-
ness of banks and the broader financial system, banks are expected to implement risk-based 
governance mechanisms for the development, deployment, and monitoring of models. These 
processes include analyzing whether models are relying on relationships in the data that are 
“conceptually sound” and assessing models’ stability in changing data conditions. Both activi-
ties involve identifying features that are playing important roles in the model’s operation. 

 »  Adverse Action Disclosures: Federal laws require lenders to provide individualized dis-
closures to credit applicants of the “principal reasons” for rejecting an application and the 
“key factors” that are negatively affecting consumers’ credit scores if the lender charges 
higher prices based on credit report information. 

 »  Fair Lending Compliance: Federal fair lending laws generally prohibit both the use of race, 
gender, or other protected characteristics in underwriting models (“disparate treatment”) and 
the use of facially neutral criteria that have a disproportionately adverse impact on protected 
groups unless the criteria further a legitimate business need that cannot reasonably be achieved 
through less impactful means (“disparate impact”). Traditional disparate impact compliance 
approaches often focus on testing whether omitting or modifying individual features that 
have been identified as driving disparities can improve fairness without substantial reductions 
in predictive accuracy. 

With advances in computational power, some lenders have begun deploying machine learning 
techniques to develop underwriting models. (See Box 2.1.2) Here, the algorithms themselves iden-
tify complex predictive relationships among large numbers of inputs, while developers make critical 
decisions about such issues as what data the learning algorithms are trained on, how the algorithms 
generate underwriting models, and what techniques, tools, and strategies are used in development 
and validation processes.16 Two of the most commonly used machine learning approaches in the credit 
context are boosted tree models (particularly a variation called XGBoost)17 and neural networks.18

Depending on the developer’s decisions and training data, some ML underwriting models may not 
be significantly harder to understand than traditional underwriting models, while others are substantially 
more complex. The most complicated models are sometimes referred to as “black box” models. They 
frequently rely on hundreds or thousands of features, including in some cases “latent features” that are 
generated by the ML algorithms from the initial inputs, and often involve complex architectures such as 
multiple layers or ensembles of individual models. These factors can help machine learning models detect 
more complex relationships within the data, including relationships that are non-monotonic (meaning 
that increasing the value of an input feature may reduce the likelihood of default in some circumstances 
and increase it in others) and non-linear (meaning that increasing the value of an input feature by a 
given amount may not change the likelihood of default by the same amount in all circumstances).19 
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BOX 2.1.1   WHY DO STRONG CORRELATIONS BETWEEN FEATURES COMPLICATE ANALYSIS OF PREDICTIVE MODELS?

Highly correlated features are variables that have 
strong negative or positive relationships with one 
another, so that changes in one are generally associ-
ated with changes in the other. Credit report data and 
other financial information that is often used in credit 
underwriting tends to be highly correlated. However, 
the presence of correlated features within a predictive 
model makes it difficult to distinguish which specific 
feature combinations are the most important drivers 
of default predictions for individual applicants, demo-
graphic groups, or for operation of models as a whole. 

For traditional logistic regression models, developers 
generally strive to reduce feature correlations in order to 
enhance model simplicity and interpretability. Given the 
linear form of these models and the relatively small num-
ber of variables typically involved, it is often feasible for 
developers to use an iterative process to select features 
that are less correlated with those already included in the 
model. However, this process does not entirely eliminate

correlation issues, and developers may have to accept 
some tradeoffs between interpretability and predictive 
power, especially if highly predictive but correlated fea-
tures are removed.20

In contrast, machine learning underwriting models  
typically use hundreds and sometimes thousands of 
features, many of which may be highly correlated. 
For instance, a machine learning model may incorpo-
rate multiple features associated with past mortgage 
delinquencies, each capturing somewhat different 
aspects of the borrower’s history. While having many 
granular features can add predictive power, the asso-
ciated correlations among features make it difficult 
to attribute variations in the model’s predictions to 
individual features. 

Data science techniques that have been developed 
to explain complex ML models vary in their assump-
tions and treatment of correlated features. See Section 
2.3.2 for further discussion.

BOX 2.1.2   WHAT IS MACHINE LEARNING? HOW DO ML UNDERWRITING MODELS COMPARE TO OTHER FORMS OF AI/ML?

Artificial intelligence is a term coined in 1956 to 
describe computers that perform processes or tasks 
that “traditionally have required human intelligence,” 
while machine learning is often used to refer to the sub-
set of artificial intelligence that gives “computers the 
ability to learn without being explicitly programmed.”21 

While the release of ChatGPT in November 2022 
sparked broad public interest in “generative AI” models 
that create new content (including text and images) 
that is similar to learned patterns in training data,22 the 
types of ML techniques used in building credit under-
writing models are sometimes called “predictive AI” or 
“discriminative AI.” They use training data to develop 
models that will predict a particular outcome (such as 
the likelihood of default) when applied to additional 
data sets. 

The scale and nature of the data used to train ML 
underwriting models differ substantially from those  
used to train generative AI models, which are often built 
using data scraped from large portions of the internet. 
This raises a broad range of questions about accuracy,

bias, intellectual property rights, and other issues.23 

By comparison, ML underwriting models are trained 
on much smaller, curated data sets, even in cases 
where they expand beyond the use of traditional 
credit history information (see Section 2.2.3). They are 
also limited in the extent to which they are allowed 
to update dynamically, so that changes are subject to 
oversight in various forms. However, even with these 
distinctions, the use of ML models for credit under-
writing raises important questions about our ability 
to understand, manage, and rely upon the models for 
such an important use case. 

Concerns about managing generative AI models 
are also increasing calls to regulate AI/ML applications 
more generally. In November 2023, a new Executive 
Order and supporting memo totaling more than 100 
pages of directions and requests to federal agen-
cies to update regulations and guidance concerning a 
broad range of AI technologies and use cases, includ-
ing to federal agencies concerning credit underwriting 
and related activities.24

This ability to detect more nuanced data relationships is core to both the opportunities and 
challenges posed by ML adoption. On one hand, it can potentially increase predictive accuracy in 
general and specifically for applicants who are difficult to assess using traditional methods and 
data.25 On the other, it creates concerns that ML models are more prone to “overfitting” to the data 
than regression models, and thus may have steeper performance deteriorations when conditions 
start to change, and that they could exacerbate demographic disparities relative to incumbent 
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models. The lack of transparency about how the models are generating their predictions further 
increases concerns about model management and regulatory compliance, particularly since tradi-
tional approaches often rely upon identifying and managing individual features.

At the same time, data science and machine learning techniques are providing a range of alterna-
tive options for evaluating and managing models. These include a variety of post hoc explainability 
methods that have been developed to analyze key aspects of model behavior, as described in Section 
2.3.2, and debiasing techniques as described in Section 6.1.3.4. Those techniques are the primary focus 
of this research project as discussed in subsequent sections. The remainder of Section 2 provides 
additional background on inclusion and fairness considerations, transparency challenges, and broader 
concerns about responsible use as the adoption of machine learning models continues to expand in 
the credit underwriting context.

2.2 Implications for Inclusion and Fairness
While lenders are adopting ML underwriting models for a broad range of business and compet-

itive reasons,26 the potential implications of this transition for inclusion and fairness are important 
to a broad range of stakeholders (see Box 2.2.1 and Box 2.2.2). Particularly if combined with more 
inclusive data as discussed in Section 2.2.3, ML underwriting models have the potential to achieve a 
number of benefits, including:

 »  Expanding access to more borrowers who are creditworthy and reducing the number of 
people who are offered loans they are unlikely to be able to repay;

 » Reducing default rates and losses;

 »  Reducing mispricing based on inaccurate estimation of the likelihood of default and improv-
ing terms at which credit is offered to some applicants; and

 » Improving identification and mitigation of certain forms of discriminatory lending.

BOX 2.2.1   DEFINING INCLUSION AND FAIRNESS CONCEPTS

This section focuses primarily on the potential for 
ML underwriting models to improve access to afford-
able, responsible credit among historically underserved 
populations, in part because of credit’s role in broader 
economic participation (see Box 2.2.2). As discussed in 
Section 6, other concepts of fairness are enshrined into 
fair lending laws and raised in broader policy debates 
about automated underwriting. These concepts include: 

 »  Equal treatment: This requires that individuals 
be subject to the same criteria and that similarly 
situated applicants receive similar treatment. 
In anti-discrimination law, this principle is 
invoked to prohibit different treatment because 
of applicants’ race/ethnicity, gender, or other 
protected characteristics.

 »  Equity: This focuses on whether there are 
equal outcomes among different groups of 
people, even if they may not be similarly 
situated in some respects. For example, the 
first stage of analyzing whether facially

 neutral practices produce a disparate impact 
focuses on whether the practice produces 
demographic disparities in approvals or 
pricing, without accounting for differences in 
financial situations. 

 »  Consistency of predictive accuracy: Adopting 
more accurate models can potentially reduce 
the incidence of certain negative outcomes 
among particular subgroups of borrowers, for 
instance by reducing the number of applicants 
who are rejected or charged higher prices due 
to overestimates of default risk and/or who are 
granted loans that they cannot repay due to 
underestimates of default risk. 

Other notions of fairness include whether credit cri-
teria are arbitrary and whether applicants should have 
notice about those criteria. Model risk management 
and adverse action notice requirements can help to 
address such concerns, as discussed in Section 4 and 
Section 5 below.
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BOX 2.2.2   THE IMPORTANCE OF FINANCIAL INCLUSION

Access to affordable, responsible financial services 
can help to increase broader economic participation, 
opportunity, and equity. For instance, credit can help to 
bridge short-term gaps in income and expenses, particu-
larly among households and businesses that experience 
income or expense volatility, and to make long-term 
investments in work-related transportation, home-
ownership, and small business growth. These long-term 
investments in turn can help build savings to increase 
long-term financial health and build wealth, including 
providing for generational transfers.

The financial system can create significant eco-
nomic multiplier effects in both positive and negative 
directions. For example, given that previous inequi-
ties created by historical discrimination in such fields 
as employment, education, housing, and lending have

contributed to substantial disparities in income and 
assets,27 it is not surprising that consumers of color may 
tend to find it more difficult to repay loans, creating a 
cycle of declining credit scores and increasing prices for 
credit. Lack of access to mainstream financial services 
and targeting by lenders that offer credit products with 
higher prices and riskier structures can also contribute to  
disparities in credit access and outcomes.28 

At the same time, financial products and services can 
also provide a helpful bridge into the financial main-
stream, for instance, by using government benefits 
delivery as an opportunity to provide consumers with 
low-cost, secure transaction accounts to manage and 
save their money29 and to become a source of data for 
credit underwriting.30

Yet stakeholders are also highlighting risks that ML underwriting models might exacerbate 
historical disparities or prove more difficult to manage for fairness concerns. These issues extend 
beyond the dictates of federal fair lending law as discussed in Section 6 to include the broader net 
effects of underwriting and pricing practices based on credit default predictions. 

2.2.1 Potential Benefits to Inclusion and Fairness
Stakeholders often focus on the potential effects of ML underwriting models on applicants 

who lack substantial traditional credit history and credit scores, but those consumers and business 
owners are just one segment of borrowers who could potentially be affected by the use of new 
techniques, with or without new data sources. Inclusion could potentially be advanced by reducing 
prediction errors in traditional credit underwriting models, implementing more effective debiasing 
techniques, and giving lenders confidence to extend credit to a broader range of applicants. 

2.2.1.1. Improving Assessment of Applicants with Little or Marred Credit History
Stakeholders are particularly focused on the potential to improve credit risk assessment and lend-

ing decisions with respect to applicants with little to no prior credit history and those whose credit 
history is marred, both of whom have long struggled to access affordable credit. For these groups, 
the higher precision or accuracy that machine learning models can achieve may be important to the 
development of business models that support lending across broader populations and groups. For 
example, VantageScore Solutions reports that the adoption of machine learning techniques in its most 
recent models resulted in an accuracy improvement of 16.6% for bank card originations and a 12.5% 
improvement for auto loan originations for consumers whose credit histories had not been updated 
in the prior six months, even though some credit scoring systems will not generate scores for such 
applicants.31 Combining ML models with new data sources has the potential to produce even greater 
impacts on populations with sparse traditional credit histories as discussed further in Section 2.2.3.
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2.2.1.2 Improving General Predictiveness
Improved accuracy can help to reduce the number of borrowers being offered loans they are 

unlikely to be able to repay and increase the number of qualified borrowers being approved for 
credit. Given that lenders rely on predictions of default risk to inform their decisions about approv-
als and credit terms, even small improvements in predictive accuracy can produce wide-ranging 
fairness and inclusion benefits for firms, borrowers, and some applicants for credit.

In practice, the net effects of moving to machine learning models—e.g., whether the increase 
in people approved using a machine learning model is larger than the number of people who 
are rejected using a machine learning model but would have been approved using a traditional 
underwriting model—will vary depending on a wide variety of factors such as market and prod-
uct segment, economic conditions, and the sophistication of the prior model. However, many 
stakeholders report at least modest net inclusion gains when moving from logistic regression to 
machine learning underwriting models using traditional data sources, and all emphasize the fair-
ness benefits of reducing approvals for those unlikely to be able to repay the requested loan. 

At the very least, lending that uses more accurate risk assessment methods can improve access 
for certain individual consumers or groups and reduce the cost of certain products for others. For 
lenders, improved performance in making default predictions can translate to reduced costs and 
opportunities to expand lending within existing customer segments and to new customer segments, 
especially those not well served by existing risk assessment methodologies. Some fintech lenders 
report that machine learning models have expanded their ability to offer credit to substantial num-
bers of applicants who would not be approved under widely used industry benchmarks and scores.32

2.2.1.3 Improving Fair Lending Mitigation Strategies
Adoption of machine learning underwriting models may also have the potential to improve identi-

fication of discrimination risks and to offer superior mitigation options when those risks are detected.33 
As discussed in further detail in Section 6, this may enable the use of models that retain the predictive 
power of variables and relationships causing disparities instead of having to eliminate those features 
entirely. The development of machine learning models enables consideration of many more iterations 
of a model than in incumbent models, including many changes to a model’s specifications, which can 
enhance predictive power and enable more explicit consideration of certain tradeoffs.34 The transition 
to machine learning is also inspiring consideration of how to incorporate additional definitions and 
methods of measuring algorithmic fairness into model development and oversight processes.35

2.2.1.4 Helping Particular Industry Segments Broaden Their Credit Boxes
One additional question is the extent to which the transition to ML occurs among smaller lenders 

such as community banks. Such lenders can play an important role in financial inclusion more generally 
by focusing on relatively underserved market segments, yet they can also be particularly dependent 
on traditional credit bureau data and third-party scoring and underwriting models in the consumer 
lending context because of analytical, technological, and human resource limitations. The transition to 
more accurate and inclusive machine learning models thus could have particular benefits in this mar-
ket segment, yet as discussed further in Section 4.2.3, ML adoption also presents particular challenges 
because those same resource constraints make it difficult for smaller institutions to supervise vendors 
with regard to proprietary models and technologies. To date, adoption of ML underwriting models has 
been concentrated largely among large banks and nonbank fintech lenders although some pockets of 
adoption are occurring among other lender segments.36
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2.2.2 Potential Risks to Inclusion and Fairness
For all of the potential benefits, ML underwriting models also raise concerns about potential 

exclusion, unfairness, and bias. These concerns are broader than establishing compliance with 
anti-discrimination laws and include more fundamental questions about data gaps, modeling 
decisions, and other issues that can affect the performance of models for particular groups. 

For example, concerns that ML underwriting models may focus on financial disparities stemming 
from historical discrimination with even greater accuracy than traditional models have heightened 
many advocates’ concerns about risk-based pricing, where lenders charge higher rates to higher 
risk applicants to offset the increased risk of loss. While proponents argue that this practice causes 
lenders to accept applications from borrowers who they would otherwise decline, critics argue 
that the higher prices increase the risk of default among the most vulnerable borrowers. Stud-
ies of both ML models and previous generations of automated underwriting suggest that pricing 
disparities for particular groups can increase at the same time that approval disparities shrink if 
models predict that previously excluded applicants are at somewhat higher risk of default (but not 
so high as to warrant disapproval of their applications).37 However, such studies have not tracked 
whether and how patterns changed over time as newly approved applicants build credit history. 

The general increases in complexity and the fact that some machine learning models rely on 
“latent features” that are identified by the learning algorithms from relationships in the input data 
also increase concerns under fair lending laws, particularly those that generally prohibit the use of 
demographics or other protected characteristics in credit underwriting. As discussed further in Sec-
tion 6.2.1, the use of latent features raises particular concerns that the models could reverse engineer 
applicants’ race or gender from correlations in input data or create complex variables that have 
disproportionately negative effects on particular groups, but that developers would have difficulty 
diagnosing or mitigating such problems due to the complexity of the models.

Finally, while the transition to machine learning presents new options for debiasing models as 
noted above, stakeholders are still evaluating the utility of those options. The transition also raises 
questions about the application of existing regulatory frameworks and the effectiveness of tradi-
tional approaches that have evolved in the context of models that use a relatively small number of 
features and less complex architectures. These issues are also discussed in greater detail in Section 6. 

2.2.3 The Role of Data Diversification 
While this report focuses primarily on the adoption of machine learning techniques rather than 

non-traditional data sources, it is important to note that the two may often proceed in tandem 
and that the incorporation of new data sources can increase both the opportunities and challenges 
posed by the adoption of ML models alone.

In the U.S., automated underwriting systems have historically relied heavily on data from three 
nationwide consumer reporting agencies to predict credit risk. Because the credit bureau files are 
made up primarily of payment history on past loans, this makes it more challenging for first-time 
borrowers to get approved. Accordingly, lenders and other stakeholders have been trying to lever 
age more diverse and granular data generated about consumers’ daily activities and behaviors 
to improve consumer and small business credit underwriting. Some sources of data, such as bank 
account information, are available for a much broader and more diverse range of consumers than 
traditional credit history.38 Diversifying data sources also potentially gives more holistic insight into 
applicants’ financial circumstances and behavioral patterns, such as income flows and how borrow-
ers pay their full range of recurring obligations including bills that are not typically reflected in credit
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BOX 2.2.3.1   TAXONOMY OF NON-TRADITIONAL DATA SOURCES

Potential data sources for credit underwriting can be 
broadly grouped into four categories:39

Customer Data: Lenders may capture a range 
of data based on their interactions with consumers 
during application processes and lending relation-
ships that can be used in credit decisioning processes. 
This may include the channel by which the consumer 
submitted the application to payment and commu-
nications patterns during a prior loan from the same 
financial institution. Privacy, fairness, and fair lending 
implications of using such data may vary given the 
range of information included in this category. 

Alternative Financial Data: Alternative financial 
data includes a variety of non-lending financial activ-
ities, including the payment of other types of recurring 
expenses, and can often be extracted relatively easily 
from deposit or prepaid accounts. Depending on the 
source, this information may contain more granular and 
timely information about applicants’ financial position 
than credit bureau records and help to provide a more 
complete picture of an applicant’s financial capabilities 
and behavior. While such information can be particu-
larly important in underwriting consumers with sparse 
credit reports, research suggests it can improve default 
prediction more broadly.40

Behavioral Insights in Alternative Financial Data: 
Some sources of alternative financial data provide 
detailed information about consumer behavior, such 
as where and when people shop or what they buy. 
Some of this information may be considered relevant 
to default risk assessment, but this data can also raise 
fairness, fair lending, and privacy concerns, particu-
larly if the behavior is highly correlated with protected 
class or consumers are not aware that such information 
will affect underwriting decisions or is being collected  
and retained. 

Non-Financial Alternative Data: Examples of non- 
financial data include search histories and personal  
networks.41 Such information tends to raise heightened  
concerns about reliability and fairness—even if they 
are statistically correlated to default risk, they may 
have no clear causal or intuitive links to creditwor-
thiness—as well as potential concerns about privacy, 
correlation with race or other protected characteris-
tics, and notice to consumers.42 This type of data is not 
commonly used in the U.S. for underwriting, although 
some nonbank lenders consider educational factors 
and digital footprint information in addition to more  
traditional inputs.43

reports.44 While researchers and lenders in some developing countries are focusing on non-financial 
alternative data sources such as cell phone use, lenders in the U.S. are generally concentrating on 
alternative financial information.45 (See Box 2.2.3.1)

New data sources can be incorporated into traditional regression models without the use of ML 
techniques, but the ML transition may facilitate data adoption in at least two ways. First, ML mod-
els’ capacity to detect patterns and relationships among a vast number of features can be useful in 
working with large and diverse data sources, particularly if they are less structured and regularized 
than traditional credit bureau data.46 Second, even for lenders who are not primarily motivated by 
the potential inclusion benefits of incorporating new data sources, the operational overhaul required 
for widespread use of ML models likely creates a chance to reset lending platforms to manage use of 
alternative data with relatively little additional cost.

When evaluating whether to include potential variables, lenders consider not only the potential 
value for predictiveness, but also inclusion and fairness considerations, logistical issues regarding 
data access and processing, other legal and regulatory requirements, and broader reputational and 
customer relationship implications. For example, new data sources may make it easier to underwrite 
consumers with little traditional credit history, but such information is typically also evaluated to 
understand the extent to which it is correlated with demographics and thus may raise concerns 
about disparate treatment or disparate impact as discussed further in Section 6. Incorporating new 
data sources also requires adjusting systems to generate adverse action disclosures based on the 
new features as discussed in Section 5 and (for banks) validating the use of the data under model 
risk management guidance as discussed in Section 4. Where developers use more opaque machine 
learning models in conjunction with the new types of data, this further underscores the importance 
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of managing transparency concerns to facilitate assessing the roles that non-traditional data play 
in individual models. 

2.3 Transparency Challenges and Tools 
Along with fairness and inclusion, questions about whether we can sufficiently understand the 

operation of machine learning underwriting models will play a fundamental role in determining the 
scope and pace of adoption going forward. Advancements in data science techniques are creating 
both opportunities and challenges in this regard for lenders, regulators, and other stakeholders. As 
noted in Section 2.1, some ML models can be substantially more complicated than incumbent models 
due to their number of features, complex architectures, and nuanced data relationships. At the same 
time, advancements in post hoc explainability techniques could potentially be useful in probing key 
aspects of model behavior and have caused stakeholders more broadly to revisit debates about the 
importance of transparency for particular policy purposes and the extent to which existing market 
practices and policy standards provide it. 

Given the importance of being able to understand model behavior for both business and regulatory 
reasons, transparency has thus emerged as an urgent threshold question that is shaping lenders’ broader 
decisions about how and when to adopt ML underwriting models. This report defines transparency 
broadly as the ability of various stakeholders to access information they need related to a model’s 
design, use, and performance. Some stakeholders use terms such as interpretability or explainability to 
express similar concepts, but as described below those two terms are often associated with particular 
approaches to obtaining greater insight into models’ operations. Indeed, one of the challenges with 
debates about transparency and associated terms is that there are no uniform definitions or bench-
marks for determining what level of information is sufficient for a particular purpose or audience.47

2.3.1 The “Black Box” Challenge
While lenders, regulators, and other stakeholders have grown accustomed to managing tra-

ditional underwriting models over time, such models are the culmination of a complex series of 
human choices during model development and validation. For example, because traditional credit 
information sources tend to be substantially correlated with each other, developers exercise sub-
stantial expertise and judgment in deciding which particular combination of individual features 
will maximize overall predictive power, simplify model operations, reduce the risk of fair lending 
concerns, and address other business and policy concerns.48 While coefficients and weights help in 
analyzing the role that the final features play in logistic regression models’ operation, other aspects 
of model development and operations can be complicated to understand depending on the degree 
of documentation created by developers and other stakeholders’ technical backgrounds.

In contrast, machine learning models are developed by tasking the learning algorithm to map 
predictive relationships in a larger number of (often highly correlated) features. The effect is not 
unlike transitioning from a simple box of eight crayons, made up largely of primary colors and 
simple combinations, to a larger box with 128 colors that provide much more precise and subtle 
combinations. Rather than just picking one or two metrics concerning past delinquencies, such as 
the number of accounts that have been 60 or more days past due in the past two years, ML models 
may divide delinquency data into much more granular time periods as well as considering whether 
the combination of delinquencies with other features such as account balances helps to further pre-
dict future default risk. However, as complexity increases the more difficult it is to tell which precise 
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combinations are most important for individual applicants, demographic groups, or the operation 
of the model as a whole.

Firms are using a variety of strategies to manage the additional transparency concerns that 
arise due to the use of learning algorithms to discover predictive relationships in larger datasets. 
These include constraining the structure of the machine learning model to make it less complex 
and easier to understand, using post hoc explainability techniques to analyze key aspects of the 
model’s behavior, and a combination of the two approaches. The result is a spectrum of models, 
ranging from what are often called “inherently interpretable” models that can generally be sum-
marized in a single, generalizable notation which conveys their features and weights assigned to 
those features,49 to highly complex ML models that are often referred to as “explainable” because 
they depend on the use of post hoc explainability methods to analyze the model’s behavior and the 
bases of its predictions.50 

Firms and researchers alike are working to understand better the tradeoffs between using inher-
ently interpretable models and pairing less interpretable models with post hoc explainability methods 
to satisfy transparency needs. Proponents of using only inherently interpretable models argue that 
well-designed models of this type perform as well as more complex models and deliver the neces-
sary transparency.51 Given the limitations and potential implementation challenges in using post hoc 
techniques as described in Section 2.3.2 and subsequent sections, they also question whether relying 
on such techniques actually compounds the challenge of establishing the responsible use of AI and 
machine learning systems and meeting specific transparency requirements.52 

Proponents of complex models that rely on post hoc explainability techniques argue that this 
approach has the potential to deliver superior predictive accuracy—for lenders and applicants 
alike—while still satisfying relevant model transparency needs.53 Industry proponents also argue 
that even model types that are offered as more interpretable can run the risk of being too com-
plicated for a human to understand and manage. For instance, while a decision tree may sound 
intuitively simpler than a neural network, they point to examples of trees with branches of 50 or 
100 layers and ensembles of tree models, which are complex enough that explainability methods 
may still be necessary to meet transparency needs.54 Others report that in the context of adverse 
action reporting, use of post hoc explainability techniques is helpful even for traditional and 
interpretable models to generate information about the key drivers of the underwriting model’s 
estimation of default risk for individual applicants.

2.3.2 Key Explainability Techniques
While post hoc explainability techniques are not the only tools that lenders rely upon to manage 

machine learning models, they play a particularly important role in satisfying lenders’ obligation to 
report the primary bases of adverse credit decisions, among other model monitoring activities. These 
techniques are supplemental models, analyses, or methods designed to describe the behavior of 
machine learning models after they have already been trained. They do not generally affect the design 
or operation of the underlying model and can be used with a variety of machine learning model types, 
although some implementations may work better than others with specific model structures. 

This section will focus on feature importance explainability techniques (specifically Shapley Addi-
tive Explanations or SHAP), and surrogate models (specifically Local Interpretable Model-Agnostic 
Explanations or LIME).55 While SHAP techniques have grown in popularity over time, stakeholders 
use a variety of approaches for different tasks and research is continuing to refine methodologies 
and explore additional ways of analyzing ML model operations.56
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2.3.2.1 Feature Importance Explainability Techniques
Feature importance explainability techniques describe model behavior by determining how 

important each input feature is to the model’s prediction. Shapley Additive Explanations— 
commonly referred to as SHAP—is a feature importance technique that has been particularly import-
ant in enabling lenders to use machine learning underwriting models. SHAP relies on techniques 
developed in game theory research to assess the impact of changing individual input features as 
a way to measure their significance to the model’s prediction. This approach considers the various 
possible groups of features that can produce a prediction and assigns a score—or Shapley value— 
to capture each input feature’s aggregate importance in the model. 

In a simple underwriting model with three features—A, B, and C—this will involve calculating 
the possible combinations in which one of the three variables is omitted and determining how the 
default prediction changes in each iteration of the exercise. If the default prediction is 5 % when 
only A is present, 9 % when A and B are considered, and 11 % when A, B, and C are considered, this 
suggests that the relative contribution measured in the assigned Shapley value for this combination 
of input features is 5 for A , 4 for B, and 2 for C. To generate the overall Shapley value for A, B, and C, 
this exercise will be repeated for all combinations of A, B, C, AB, AC, BC, and ABC. In the end, values 
where A is present will be averaged and subtracted from the average value when A is not present 
to determine its Shapley value. The critical feature of Shapley values is that they can be aggregated 
across a large number of similar simulations, making them a useful tool for summarizing the contri-
bution of individual input features to the overall prediction of a machine learning model.

However, various technical and implementation issues can affect the reliability of information 
produced by feature importance techniques. While SHAP can in theory precisely account for feature 
correlations, the number and complexity of the required calculations prompt users to adopt sampling 
techniques and other methods of reducing computational demands. Although versions of SHAP that 
are tailored to particular model architectures can be more efficient (which are sometimes called SHAP 
“implementations”), approximation or sampling methods are often used with some tradeoffs in the 
quality of explanations. If too few samples are used, the resulting SHAP values could be noisy and not 
reflective of actual model behavior.57 Data scientists are also working to evolve techniques based on 
SHAP and other approaches to use more realistic assumptions about distributions and correlations 
in underlying data.58

More broadly, the fact that feature importance methods explain complex models by reference to 
their input features also raises questions about whether they are sufficient to detect and convey key 
aspects of model operations, particularly in situations where different input features are components 
of or contribute to other input features and situations in which relationships derived inside the “black 
box” may be the key drivers of the model’s prediction. Fully expressing the role that features derived 
within the model play in determining the model’s prediction can be both technically and practically 
challenging.59 For example, a machine learning model might determine that late payments on mort-
gage loans are highly predictive of default risk when an applicant has an outstanding balance above 
$200,000. Feature importance methods might identify the number of late payments and outstanding 
mortgage balance as the key input features. However, reporting either or both of those as individual 
reasons on an adverse action notice may not fully convey the model’s operations, since the combined 
effect of the features together caused some individual consumers to be predicted as high risk. As 
described further in Sections 4-6 stakeholders are grappling with the importance of being able to 
pinpoint feature interactions for multiple compliance requirements.
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BOX 2.3.2.1   TYPES OF EXPLANATIONS

Model explainability is sometimes defined as the 
understanding of how a model makes its predictions.60

Different types of explanations may be important for 
different purposes. Global explanations shed light on a 
model’s overall decision-making processes, relevant for 
assessing a model’s suitability for a specific task. Local 
explanations, on the other hand, clarify the reasons 
behind specific decisions made by the model, such as 
predicting default risks for individual applicants.61

Explanations can either be “true to the data,” aim-
ing to unveil the causal relationships between a feature 
and default risk, or “true to the model,” which analyzes 
the (mechanical) prediction process even if the model

doesn’t capture the underlying causal dynamics.62

The necessity for both global and local explanations, 
along with the examination of a model’s meaningful 
relationships and its prediction process, underscores 
the importance of choosing the right tool for a partic-
ular task.

The type of explanation also holds policy relevance. 
For instance, as discussed in Section 5, when consid-
ering adverse action disclosure requirements, true to 
the data explanations might be more useful in helping 
recipients lower their default risks, whereas true to the 
model explanations could help identify errors in the 
information used by lenders for decision making.

2.3.2.2 Surrogate Models
Surrogate models are also sometimes used to explain uninterpretable or black box models, such as 

large tree ensembles (including XGBoost) or deep neural networks. Surrogate models are designed to 
mimic the original or underlying model, and they are trained on predictions from that model. However, 
surrogate models generally have characteristics that make them easier to understand—for example, 
they may be more parsimonious and explainable than the model they are being used to explain.63 In 
practice, surrogate models are often shallow decision trees, rule sets, or regression models. 

The popularity of local surrogate models to explain why ML underwriting models make individual 
default predictions has declined over time as many market actors have concluded that Shapley values 
have conceptual and performance advantages, but the models are still used for some other purposes 
in credit and in a variety of non-credit contexts.64 Local Interpretable Model-Agnostic Explanations— 
or LIME—is one of the most widely used surrogate model methodologies and has influenced the devel-
opment of other post hoc explainability techniques. LIME uses local linear surrogate models around a 
particular data point to approximate the complex model’s output.65 The resulting local surrogate models 
are used to both explain the model’s behavior as applied to individual applicants and to quantify feature 
importance for inputs to the overall model. 

However, the characteristics of LIME’s surrogate models may diverge from the models they are 
used to explain in several significant ways. For example, the surrogate is often a linear model. It 
may also have substantially fewer features than the underlying model. As a result, the explanation 
produced by the surrogate may not perform well in capturing and explaining feature interactions. 
For example, credit card applicants may be at high risk of default if they have both (1) more than 
two credit cards, and (2) high credit utilization. On the other hand, suppose that applicants who 
have only (1) or (2) alone are not at high risk of default. A linear model cannot represent this effect 
in the underlying model. 

LIME is versatile and adaptable since it can be used to explain a variety of types of models. 
It also works across a variety of data types, including text, tabular data, and images. The primary 
challenge for LIME is derived from the inherent difficulty of relying on a simplified model to explain 
a much more complicated model. This challenge is more acute when the surrogate is a linear model, 
since the surrogate in this instance may not do well in mimicking the effect of non-linear relation-
ships and feature interactions in the underlying model. To address this limitation, LIME uses a local 
surrogate model instead of trying to mimic the underlying or original model at all points and builds 
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a separate surrogate model for each explanation it produces. Different implementation choices can 
also be made with regard to application of LIME techniques.66

2.4 Broader Questions about Responsible Use
Fairness and transparency are two critical components of broader debates about whether and 

how machine learning models can be used responsibly in such a sensitive use case as credit under-
writing. In other sectors and countries, stakeholders often include them in longer lists of qualities or 
principles to define what constitutes “trustworthy” artificial intelligence or machine learning along 
with such qualities as reliability/accuracy/robustness and oversight/governance/accountability. (See 
Box 2.4.1) Although the trustworthiness label has not been widely adopted by financial services stake-
holders, their basic conceptual concerns about responsible use of ML models in credit underwriting 
and financial services more generally are quite similar.

These considerations are woven through debates about how to comply with specific regulatory 
regimes in the financial services context—as discussed further in Sections 4 to 6—but also operate 
at a more fundamental level to shape firms’ and regulators’ attitudes about the merits of adopting 
machine learning models in the first instance. In effect, they can present a chicken-or-egg conun-
drum: Stakeholders may be less motivated to adjust market practices and regulatory frameworks 
to account for ML adoption if they are not convinced that ML models can be managed responsibly 
to create substantial improvements over the status quo, and yet the nature of market practice and 
policy adjustments will help to define responsible use and determine the nature of realized benefits. 
As ML adoption increases in some market segments, pressure is increasing on the full range of credit 
ecosystem stakeholders—including skeptics—to grapple with these broader questions.

As reflected in the more detailed sections that follow, one recurring conceptual issue concerns the 
importance of human agency in understanding underwriting models. As discussed in Section 2.3, it is 
difficult for current explainability techniques to detect and fully convey feature interactions and 
relationships inside the most complex models. Data science techniques can often provide alterna-
tive means of analyzing model operations, and various measures can be used to monitor model 
outcomes. But stakeholders are debating whether it is critical to be able to understand ML under-
writing models at the same level and in the same ways that can be achieved with logistic regression 
models for their results to be considered reliable and fair in a broad sense. At the highest level, these 
questions ask whether it is appropriate to rely upon models that we cannot fully understand.

A second and closely related issue concerns whether we can manage models that we cannot 
fully understand to address specific business and policy goals. Traditional strategies may not be 
as effective when applied to models that involve hundreds or thousands of input features—and 
potentially even more interactions or latent features within the model. Simply removing or trans-
forming a single data point may not have the same effect as in traditional models, since one feature 
out of thousands is likely to make a smaller marginal contribution to the model’s prediction even 
when correlations are accounted for. And in more complex models, the feature interactions inside 
the “black box” may be more critical to the models’ operation relative to individual input features in 
isolation. This may require different approaches to optimize for particular business and policy goals 
at the beginning of the development process rather than making small adjustments at the end.

Whether we can achieve a reasonable level of understanding and confidence in ML models for 
underwriting and other financial services activities is thus essential to both the business case for 
adoption and debates over whether and how to adapt specific regulatory frameworks. Yet while the 
complexity of ML models presents substantial conceptual and practical challenges, it is also import-
ant to recognize that this moment presents opportunities for improving the standards, processes,
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BOX 2.4.1   TRUSTWORTHINESS FRAMEWORKS

Dialogues about the qualities of trustworthy AI have 
started across multiple jurisdictions, markets, and use 
cases with an eye toward facilitating a broad consen-
sus about responsible use of AI/ML technologies as well 
as creating a starting point for adapting sector-specific 
technological standards and regulatory requirements.

Reliability, fairness and inclusion, and transparency 
are among the most common qualities and principles 
cited across these various initiatives. For example, the 
European Union’s recently adopted framework for reg-
ulating AI/ML builds on a 2019 European Commission 
formulation of seven key requirements for trustworthy 
AI: human agency and oversight; technical robustness 
and safety; privacy and data governance; transparency; 
diversity, non-discrimination and fairness; societal and 
environmental well-being; and accountability.67

Other general frameworks for ethical/trustworthy 
AI have been published by the Alan Turing Institute 
under a commission by the United Kingdom’s Finan-
cial Conduct Authority (five principles of AI ethics, 
which include fairness, sustainability, safety, account-
ability, and transparency); the U.S. National Institute 
of Standards and Technology (seven qualities: valid/
reliable, safe, secure/resilient, explainable/interpre-
table, privacy-enhanced, fair/harmful bias managed, 
accountable/transparent); and the Organisation for 
Economic Co-operation and Development (six key 
principles: inclusive growth, sustainable development 
and well-being; human-centered values and fairness; 
transparency and explainability; robustness, security 
and safety; and accountability).68 

and tools that were developed to manage prior generations of predictive models in financial ser-
vices. In addition to new data science techniques for explaining and debiasing models, ML adoption 
is helping to highlight and fuel debates about unresolved questions and tensions in existing business 
and regulatory practices. 

Stakeholders who support the adoption of ML models emphasize the importance of considering 
the disadvantages and tradeoffs that are embedded in traditional underwriting systems and compli-
ance regimes when assessing both the potential risks and benefits of adopting new techniques and 
data. For example, judgmental underwriting by individual loan officers is both opaque and subject 
to risks of bias and inconsistency, as well as being difficult to scale efficiently. Prior generations of 
automated predictive models have increased consistency and scale, but are subject to data limitations 
and concerns about the effectiveness of current practice and regulatory frameworks with regard to 
fairness and inclusion, empowering and educating borrowers, and other topics. Moreover, different 
stakeholders’ understanding of the models varies substantially in practice due to information asym-
metries both within and among firms, their regulators, and their customers. 

Thus, the debates about ML adoption may present opportunities to consider expectations for all 
types of underwriting models to determine how best to effectuate business and policy goals. This 
report speaks both to broader questions about the responsible use of machine learning underwriting 
models and to questions about adapting specific regulatory frameworks (model risk management, 
adverse action notices, and fair lending) to account for the growing use of machine learning and 
associated explainability and debiasing techniques. In so doing, it helps to surface opportunities to 
enhance frameworks, governance, and oversight for purposes of promoting fundamental goals such 
as responsible risk-taking, transparency, financial inclusion, and anti-discrimination. 
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3. OVERVIEW OF FINREGLAB’S RESEARCH
The issues discussed in Section 2 informed FinRegLab’s decision to interrogate available techniques 

and tools for managing explainability and fairness concerns with machine learning underwriting mod-
els. The purpose of the project has been to inform decision-making by policymakers, firms, industry 
groups, advocates, and researchers as the financial services sector develops norms and rules to govern 
the responsible, fair, and inclusive use of machine learning for credit underwriting. Examining the capa-
bilities and performances of emerging model diagnostic tools in the context of comparatively stringent 
financial services requirements can also inform both the use and governance of machine learning in other 
sectors and the development of more effective data science techniques for explaining and understanding  
these models.

We conducted both quantitative and qualitative research to support the policy analyses provided 
in this report: 

 »  We partnered with Stanford Business School professors Laura Blattner and Jann Spiess to 
produce an empirical white paper analyzing the ability of post hoc explainability techniques 
and other model diagnostic tools to help lenders understand and manage machine learn-
ing credit underwriting models. Our empirical work evaluated proprietary tools offered by 
seven technology companies–Arthur AI, H20.ai, Fiddler AI, Relational AI, Solas AI, Stratyfy, 
and Zest AI–as well as open-source techniques as applied to various tasks relating to model 
risk management, adverse action disclosures, and fair lending compliance. 

 »  We conducted extensive interviews and engagement with a broad range of stakeholders 
to explore the implications of ML underwriting models for market practice and regula-
tory frameworks. In addition to convening a project advisory board to inform the initial 
organization of the project, FinRegLab in 2022 co-sponsored a symposium with the U.S. 
Department of Commerce, National Institute of Standards and Technology, and the Stan-
ford Institute for Human-Centered Artificial Intelligence and organized three policy working 
groups to discuss key aspects of ML adoption. The policy working groups convened more 
than 75 representatives of lenders, data and technology companies, advocacy organiza-
tions, researchers, and other stakeholders to engage in extended conversations about both 
the challenges and opportunities associated with adoption of machine learning in credit 
underwriting. Representatives of federal banking regulators and the Consumer Financial 
Protection Bureau attended the sessions in an observer capacity.69

Section 3.1 provides an overview of our empirical methodology and global findings, but addi-
tional detail on the findings for each regulatory compliance area can be found in Sections 4 to 6 
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and in the underlying Empirical White Paper.70 Additional discussion and market and data science 
context can be found in our other reports from this project.71

3.1 Empirical Summary
Our empirical research applied various explainability techniques and model diagnostic tools to 

a range of credit card underwriting models to perform various diagnostic and management tasks 
relating to the three regulatory compliance topics. While several other studies have demonstrated 
that explainability tools can produce information about machine learning credit models, they did 
not systematically evaluate these explanations in the context of regulatory compliance.72

The underwriting models were built using a representative sample of data from a nationwide 
credit bureau from 2009 to 2017, and included four models of varying complexity that were built by 
the research team as well as several machine learning models built by the participating companies 
using the same data.73 

For each regulatory compliance topic, the research team then analyzed the explainability tools’ 
outputs for three primary qualities:

 »  Fidelity: The ability to reliably identify features that are relevant to a model’s prediction 
for the particular regulatory purpose (adverse action disclosures, fair lending compliance, or 
model risk management).

 »  Consistency: The degree to which different tools identify the same features to be import-
ant when they were applied to the same model.

 »  Usability: The ability to identify information that helps the user (whether a consumer or a 
lender depending on the circumstances) perform certain tasks, such as improving their future 
chances of credit approval or managing the model to address a specific regulatory concern.

We viewed fidelity and consistency as threshold technical questions about the tools’ reliabil-
ity, with fidelity playing the most important role. Across each of the different regulatory topics, 
one of the ways that we tested fidelity was to change the values in the underlying data for the 
features identified by a particular tool as important for the regulatory purpose and measure the 
effect on model predictions as compared to changing (or “perturbing”) the values of features that 
were chosen at random or that were closely correlated to the features that had been identified as 
important.74 In evaluating consistency, we compared the extent to which different tools identified 
the same features as important for purposes of the particular regulatory task.75

The usability tasks and analyses were the most varied and complicated because they tested not 
just what information was returned by explainability tools but how the information could be used to 
achieve particular goals. In the adverse action context, we focused on whether the explainability tech-
niques could be used to identify a set of plausible changes in credit report metrics over twelve months 
that would cause consumers to meet thresholds for their applications to be approved. For fair lending, 
we evaluated recommendations by the participating companies for how to reduce racial disparities in 
model predictions, some of which were predicated upon information generated by the explanations 
and some of which were not. For model risk management, we assessed the tools’ ability to determine 
why model performance changed when applied to data from different time periods.

As discussed in greater detail in the following sections and the empirical white paper, our empir-
ical analyses found that some but not all of the explainability tools we tested could reliably identify 
features that were important to models’ behavior for particular tasks. The explainability tools with 
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the highest fidelity generally tended to perform well when applied to different model types and 
to both simple and complex models. Notably, however, the gap in performance between higher 
fidelity and lower fidelity tools tended to be most pronounced when applied to complex models, 
which suggests that the choices that lenders make about which diagnostic tools to use and how to 
apply them becomes even more important when the models involve large numbers of features and 
complex techniques and architectures. 

We also found that the explainability tools with the highest fidelity tended to identify more 
of the same features as important to the model than tools that performed poorly on fidelity 
tests, although there were still some variations among the higher fidelity tools particularly when 
they were applied to more complex models. This pattern appears to be driven in part by the fact 
that more complex models incorporate a large number of features that are closely correlated to 
each other. The level of consistency in identifying “important” features in more complex models  
improved substantially once we accounted for broader feature families and correlations, for exam-
ple by grouping, or aggregating, features focusing on 30-, 60-, and 90-day delinquencies into a 
broader “delinquency” category. 

While the results were encouraging, it is also important to note that no one tool performed 
the best across all regulatory tasks and topic areas (i.e., adverse action, fair lending, and model risk 
management). This underscores the importance of lenders selecting the right diagnostic tool for 
specific tasks and making thoughtful decisions about deployment. For example, while many tools 
relying on SHAP feature importance measurements performed well, some did not. The research 
suggests that the combination of different SHAP implementations and different sampling meth-
ods could lead to variations in the response. Further research would be helpful as academics and 
private sector stakeholders continue to develop new approaches and iterate on existing options.

These and other empirical results underscore the importance of interpreting the outputs of diag-
nostic tools in light of the broader relationships within the data. Because features that a particular 
tool identifies as “important” serve as approximations for patterns in model behavior that are linked 
to both the identified features and other features that are correlated with them, other features 
may also be making important contributions to model outcomes. Thus, assuming a single feature 
within a correlated cluster is the sole driver of model behavior is likely incomplete. This speaks to 
the importance of lenders having a strong understanding of the data that are being used to build, 
train, and deploy ML models for credit underwriting decisions. 

In the fair lending context, our results also explored the potential benefits of new debiasing 
techniques for reducing disparate impacts. Where we tested approaches that relied on traditional 
mitigation strategies by identifying and modifying a narrow subset of features, we found that model 
performance declined with little to no improvement in fairness. But more automated approaches 
were able to produce a menu of options that provided larger fairness benefits and smaller accuracy 
tradeoffs, as discussed in Section 6. While we did not test the full spectrum of approaches, our find-
ings illustrate the more powerful toolkit that new data science techniques can provide in searching 
efficiently for fairer models.

The next three sections provide more detailed discussions of explainability and fairness concerns 
regarding machine learning underwriting models for each of the three regulatory areas that were a 
focus of our empirical study. Each section provides regulatory and operational context before dis-
cussing our research findings and policy implications and debates more generally.
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4. MODEL RISK MANAGEMENT
The model risk management (MRM) framework has been imposed by federal prudential regula-

tors to promote responsible risk-taking in the banking sector by requiring both a comprehensive risk 
assessment prior to adopting new models and the implementation of monitoring plans and controls 
after deployment.76 It not only provides a regulatory scaffolding for considering the robustness of 
models through stress testing and other analyses, but in effect serves as a broader governance frame-
work for determining the trustworthiness of models of all types—not just ones used for underwriting 
or built with machine learning techniques. While the framework does not formally apply to nonbanks, 
elements may be adopted as a matter of best practice or required by investors and other contractual 
partners. Thus, it is little surprise that the MRM framework has become a focal point in discussions 
about the responsible use of AI/ML across the financial services sector. 

Notions of transparency are deeply interwoven in the MRM framework, ranging from extensive 
documentation of model development, validation, and monitoring to processes for analyzing the 
conceptual soundness and performance of features that play a key role in model operations. This 
section focuses primarily on core model risk and governance issues that are implicated by broader 
concerns about the transparency of machine learning models and does not provide a full treatment 
of all MRM compliance considerations for ML underwriting models or for the use of AI/ML in finan-
cial services more broadly. It begins by summarizing regulatory and operational context in Section 
4.1 before addressing selected policy issues in greater detail in Section 4.2. These topics include: 

 »  The potential crossover between traditional model risk management guidance and  
broader trustworthiness frameworks;

 »  Standards for evaluating explainability techniques and conducting conceptual  
soundness reviews;

 » Governance standards for nonbanks; and

 » Validating vendor-provided models and explainability tools.

4.1 Regulatory and Operational Context
Federal prudential regulators have issued extensive guidance outlining their expectations for steps 

that banks should take in developing, monitoring, and using models of all types throughout all aspects 
of their operations in order to promote responsible risk-taking.77 This guidance applies broadly to the 
range of model use cases that might create unexpected losses, compliance problems, or other nega-
tive outcomes for the depository institution and calls for enterprise-wide risk management processes 
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including governance, policies, and controls. This framework makes firms responsible for document-
ing their development and validation processes, model limitations, and monitoring and mitigation 
strategies. It also requires firms to provide independent review of such documentation to help ensure 
that the institution is not exposing itself to unnecessary risk because of an erroneous or substandard 
model, model development process, monitoring plan, governance, or controls. 

In practice, financial institutions calibrate efforts to evaluate and monitor risks related to models 
based on the degree of risk posed by the particular use case. Credit underwriting is often considered 
to be among the highest risk activities. Thus, for depository institutions, model risk management 
expectations typically require extensive pre-deployment review of credit underwriting models and 
monitoring during use, especially for firms that emphasize retail or consumer banking. For non-
bank financial institutions, bank regulatory expectations may broadly inform aspects of their model 
oversight practices, in part because funding and securitization partners may require some of these 
processes and practices in their contracts. The same may be true in varying degrees for nonbank 
financial institutions that are public companies.

Prior to adopting a new model, MRM validation processes focus on two complementary compo-
nents, each of which try to surface potential weaknesses in the model from different perspectives: 

 »  A review of the conceptual soundness of the proposed model evaluates the pro-
posed model’s detailed structure to assess robustness and stability. This involves 
assessing the appropriateness of data sources, the suitability of the model structure and 
estimation methodology in light of how the model is expected to be used, the theoretical 
grounding of input features and estimated relationships in the model, features’ statistical 
significance, and the intuitiveness of their directional impacts, linear/non-linear relationships, 
and relative magnitudes, as well as the model’s consistency with business objectives and 
policies. Conceptual soundness can also involve quantitative testing of models for issues not 
addressed by outcomes assessments.

 »  An outcomes assessment evaluates the model’s performance under various 
scenarios to assess how its prediction might change. This analysis tries to isolate 
potential anomalies in the model’s performance based on the variability and potential 
trends in error rates, particularly over time and in different conditions. The assessment is 
typically performed for the model overall and for different sub-groups (such as different 
risk factor ranges or by time periods). In addition to backtesting against data from other 
historical periods, outcomes analysis also includes stress-testing and simulations whereby 
the model’s predictions are evaluated over input combinations that may not be part of 
the training, validation, or test data. In assessing performance, stability, and robustness 
during validation of a proposed model, the validator is looking for evidence of predic-
tion anomalies—model outcomes that appear to be illogical, unreasonable in direction or 
magnitude, or inconsistent with other benchmarks. 

Different aspects of model transparency play a particularly important role in conceptual soundness 
processes. At a broad level, the guidance requires documentation of the processes by which a model is 
developed, validated, and monitored during deployment.78 For traditional underwriting models, con-
ceptual soundness reviews have traditionally been done in part by assessing whether the model relies 
on relationships that are empirically sound and draw on appropriate institutional experience, industry 
practice, and relevant economic theories.79 Empirical analyses often focus on how well developers 
have balanced using features that offer predictive power while reducing redundancy in correlated 
features and managing other types of risks, such as consumer protection risk due to adverse actions 
notice requirements and fair lending enforcement risk due to disparities for protected classes.
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BOX 4.1.1   MODEL PERFORMANCE, STABILITY, AND ROBUSTNESS

Outcomes assessments typically focus on three qualities: 

 »  Performance: A model’s performance refers to 
its effectiveness in making accurate predictions 
using appropriate metrics depending on the 
context.80 Performance is often measured 
by back-testing additional data, whether 
drawn from the sample, from outside the 
sample during the same time period, or 
from a different time period. Performance 
metrics are often reviewed in comparison to a 
benchmark, such as a traditional credit score 
or the performance of an underwriting model 
currently in use, and often include metrics 
designed to capture economic performance, 
such as profitability metrics like net interest 
income and net charge-offs.

 »  Stability: Model stability refers to the model’s 
ability to deliver consistent performance in 
the presence of changing conditions. In many 

 cases, lenders use an out-of-time dataset 
from periods of economic stress that are of 
particular interest. These datasets are split 
up into monthly segments and performance 
metrics are calculated for each of the time-
based segments. Significant variance in 
performance metrics over these segments 
indicates less model stability. In some cases, 
stability may also be assessed by examining 
whether there are significant variations in the 
coefficients for individual features when the 
model is applied to different samples and 
time periods. 

 »  Robustness: Model robustness evaluates the 
extent to which assumptions made during the 
model development process impact model 
stability. Alternative models are often evaluated 
to determine their relative sensitivity to 
changing inputs and economic conditions. 

For machine learning models, conceptual soundness processes include documenting how the 
learning algorithm produced the final model. Firms often produce this information by using new 
techniques and analyses used to retroactively unpack information about how the model works, 
such as the feature importance methods described in Section 2. In this context, the Office of the 
Comptroller of the Currency has recognized that:

An evaluation of conceptual soundness may be difficult for some complex models (e.g., those that 
use AI approaches) because the underlying theory and logic may not be transparent. Transparency 
and explainability are key considerations that are typically evaluated as part of effective risk 
management regarding the use of complex models. The appropriate level of explainability of a 
model outcome depends on the specific use and level of risk associated with that use.81

4.2 Selected Policy Topics
Because traditional model risk management guidance provides a flexible approach to managing 

risks across a wide variety of bank models, it can provide a useful framework for managing the tran-
sition to ML techniques and new diagnostic and debiasing tools. Indeed, it is often cited as a potential 
tool for other sectors to consider in adopting AI/ML applications for other use cases.82 At the same 
time, the existing prudential guidance was drafted before ML adoption for underwriting and other 
contexts accelerated, and some financial services stakeholders suggest it could benefit from refreshing 
and elaboration. Federal financial regulators sought feedback in 2021 on whether updates would be 
useful to MRM or consumer protection guidance but have not yet released a specific proposal.83

As this process plays out, one question is whether there is potential value in supplementing 
the MRM guidance at a broad conceptual level, similar to the frameworks for responsible AI that 
are emerging in other sectors and jurisdictions as discussed in Box 2.4.1. Stakeholders have also 
identified more specific areas of potential focus with regard to enhancing model risk management 
and general governance for ML adoption, including: (1) standards for evaluating explainability 
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techniques and conducting conceptual soundness reviews of ML models; (2) governance stan-
dards for nonbanks; and (3) challenges in validating vendor-provided models and tools. Each of 
these topics is addressed below.

4.2.1 Updates to General MRM Frameworks
The broader frameworks for trustworthy or responsible AI that are emerging in other jurisdictions 

and sectors as discussed in Box 2.4.1 are not always as detailed in articulating processes for risk mitigation 
across specific stages such as development, validation, and deployment as existing MRM guidance, yet 
they articulate a broad range of considerations in developing and deploying ML models such as reliability, 
transparency, fairness, privacy and security, and accountability. The existing MRM guidance emphasizes 
that “model risk” includes potential business/strategic and reputational damage as well as financial losses, 
yet it is most concrete in focusing on accuracy, robustness, and other primary performance considerations 
and on governance processes.84 While other bodies of federal regulatory guidance address topics such as 
fair lending, privacy, and information security, that guidance was not developed to address ML adoption 
specifically and varies as to its focus and scope of jurisdiction.85 

As a result, there is no single high level conceptual list of qualities or risks that should be evaluated 
in determining whether to adopt a particular ML model for use in credit underwriting or other finan-
cial services use cases.86 Some stakeholders suggest that adopting a common sector-wide framework 
of core considerations for ML models could increase the general consistency of practice, provide useful 
guideposts for rapidly evolving areas and topics not covered by more detailed guidance, and facilitate  
the identification of situations in which existing frameworks and practices need to be tailored for 
particular use cases or technologies. For example, a common framework could encourage lenders to 
develop protocols for evaluating machine learning models as to various qualities and to engage in 
an ongoing dialogue with regulators about their analytical methodologies and substantive results. 
Other stakeholders are skeptical, suggesting that the relevant concerns are so use-case specific that a  
general list would not be helpful.

Broad debates about responsible AI are also prompting some stakeholders to call for a renewed 
focus by lenders on standardizing their procedures and documentation for model development, 
pointing to survey results suggesting that even large financial institutions have not necessarily artic-
ulated precisely which algorithms and approaches are permissible to use in processing data, building 
models, and managing concerns about transparency and other risk topics.87 At least one company 
has begun using blockchain as a means of articulating development standards and documenting 
model development decisions.88 

4.2.2  Standards for Evaluating Explainability Techniques and Conducting Conceptual Soundness Reviews
The adoption of machine learning techniques is also prompting more specific debates about MRM 

standards for use of particular explainability techniques and conducting conceptual soundness reviews 
more generally. Reviewing the conceptual soundness of traditional models focuses on measuring individ-
ual features and relationships against conventional measures of statistical validity and evaluating their 
alignment with economic theory and industry and institutional experience. Model developers typically 
provide documentation that includes descriptions of each feature in the model and the basis for its 
inclusion, such as empirical testing that establishes the ability of a feature to predict an outcome and 
an intuitive justification for the relationship of that feature to the outcome.89 The notation of logistic 
regression models themselves identify both the input features and their weights, and further statistical 
analyses are widely accepted ways for establishing conceptual soundness. The combination of selecting 
features based on economic, behavioral, and other theories and the empirical information provided by 
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the weights and familiar tests has prompted some commentators to suggest that “conceptual soundness 
is a fundamental property of econometric models by their very nature.”90 

Financial institutions using machine learning underwriting models have therefore had to adapt 
their policies and procedures for establishing conceptual soundness to account for differences in the 
development process, the number of features in the models, and model transparency, as discussed 
in Section 2.3. Although practice is varied, establishing the conceptual soundness of machine learn-
ing models can require more effort than for logistic regression models for a variety of reasons:

 »  Use of more features and more complex models may require more review than incumbent 
modeling methods as well as involve new analyses and new or different personnel, all of 
which can elongate review periods; 

 »  Explainability tools such as SHAP are often required to generate information to facilitate a 
more thorough review of how the model operates, which requires lenders to decide which 
tools to use and to train analytics staff and second-line review teams on how to use and 
interpret output from these tools;

 »  Use of machine learning models often increases scrutiny of the model because of concerns 
that adoption of new technologies can increase inherent risk across several risk areas con-
sidered within the MRM framework.

Among industry and other stakeholders, questions about the application of specific explainabil-
ity techniques are just one component of broader debates about the ability to conduct conceptual 
soundness reviews of ML models and of the utility of more specific model risk guidance. This section 
outlines how conceptual soundness reviews of ML models are occurring (including the roles that 
explainability techniques can play), criteria for evaluation and selection of such techniques, and 
broader debates about conceptual soundness of ML models.

4.2.2.1 Evolution of Conceptual Soundness Review Processes
Conceptual soundness reviews for machine learning models in part cover similar terrain as they 

do for traditional models—such as selection and treatment of the data and articulation of the 
outcome the model is designed to predict—yet differences in how machine learning models are 
developed drive the use of different analyses and techniques to assess and document a model’s 
conceptual soundness.

A conceptual soundness review for a machine learning model begins with an assessment of the 
suitability of the data for modeling. This step addresses questions such as whether the information 
is representative of the population the model is expected to evaluate, whether sufficient controls 
are in place to protect the integrity of the data, and if the information is of sufficient quality and 
reliability in light of the use case and architecture of the proposed model. 

The next steps scrutinize both the data point or outcome that the model is designed to predict 
(often called the modeling target) and the input features in the training data set that will be used 
to predict the modeling target. Underwriting models are typically probability of default models, 
which predict the likelihood of a binary outcome such as whether a loan will go 90 days delinquent 
in the first 24 months of the loan. Justification must be provided as to the choice of target variable, 
the performance window, and any reject inference methods used during the development process.91 

With regard to the input features, validation in both traditional and machine learning model 
development involves assessing relationships in the available data in light of business objectives, 
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risk tolerance, and prior experience. The process of selecting these features, justification for the 
number used, the definition of individual input features, methods of calculating individual input 
features, and the accuracy of those calculations are all subject to review. The process also includes 
consideration of the intuitive connections between the input features and the target. For example, 
does it make sense that the number of delinquencies on past obligations could predict the likelihood 
of default? 

Next, model validation teams consider developers’ choice of modeling method. Model develop-
ers must justify the choice of model architecture, modeling method, and learning algorithm selected. 
This inquiry relates to how the model development team elected between options such as a logistic 
regression, a gradient-boosted tree, or an artificial neural network. For example, using a neural net-
work trained on a data set that is small and narrow may present inappropriate risk because of the 
risk that “overfitting” would cause performance benefits to deteriorate rapidly in the face of changes 
to economic conditions, customer populations, or other data. Often, when a machine learning model 
is proposed, developers create both a set of potential ML models and a new model using traditional 
techniques to help assess whether there is a need to take on a more complex model and, if so, which 
one best fits the lender’s overall objectives. The more complex ML model will generally be proposed 
for use only where it yields greater predictive performance than the less complex model, although 
individual firms may make different judgments about the size of improvement necessary to justify 
use of the more complex model. 

At this point, the steps in the conceptual soundness review begin to diverge from those used 
with traditional models. When a machine learning model is used, model hyperparameter choices are 
also a major point of focus.92 For an XGBoost model, this might include justification for the number 
of trees and the maximum tree depth, for example. These choices are also typically justified by 
building alternative models using different hyperparameter choices and empirically demonstrating 
that the selected value yields the best performance. 

The relationships the model learned between the input features and the target are also subject 
to different forms of scrutiny to understand the importance of individual features to the operation 
of the ML model. The number of features and more complex architectures used in many ML models 
complicate producing the same kind of feature-by-feature analyses that are typically generated for 
traditional models with a relatively small number of inputs. Here, practice varies, but in most cases 
firms use a range of analyses for this component of conceptual soundness. Three main approaches 
are considered here: use of Shapley values, partial dependence plots (“PDP Plots”), and individual 
conditional expectation plots (“ICE Plots”).93

 »  Shapley Values. Shapley values can be used to derive a holistic picture of model behavior 
and to illuminate the contribution each input feature makes to the model’s predictions overall 
and for a given segment or population. This review helps lenders review and assess whether 
the contributions of each variable to model predictions are intuitive and whether the model is 
overly reliant on any one feature or category of features which may be correlated. For exam-
ple, this analysis can determine whether the model relies on positive repayment behavior 
more than negative repayment behavior, or whether the model relies more on self-reported 
application data, internal bank data, or data from credit bureaus. Analysis of the contribution 
of each variable or category of variables to a model’s predictions can provide insight into how 
robust the model will be in the face of missing data, errors in the data, or temporary changes 
in conditions. This analysis may be repeated for various segments of the population to assess 
how changes in the contributions of input features to model scores affect different groups. 
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 »  PDP Plots. To understand the relationship between the input features and the model score, 
partial dependence plots associated with each of the input features are reviewed. The plots 
group different values of the feature into bins along the X axis and display the average model 
prediction associated with each bin. Partial dependence plots allow model developers and 
internal and external reviewers to examine the trend in model predictions associated with 
values of a particular variable. These plots are inspected to determine whether the model has 
learned a predictive relationship that meshes with the intuitions and collective experience of 
model developers, second-line reviewers, and other stakeholders. For example, examining the 
partial dependence plot for an input feature such as the count of past delinquencies would 
allow a model developer or reviewer to determine whether, on average, a model predicts a 
higher likelihood of default for applicants with more past delinquencies.

 »  ICE Plots. Another tool used to examine the relationship between an input feature and a 
model’s prediction is the individual conditional expectation or “ICE” plot. ICE plots examine 
a model’s predictions for each observation in the dataset by substituting a range of values 
for a given input feature, while keeping all other features constant. These further help model 
developers and reviewers assess whether a model is behaving in ways that are intuitive and 
predictable based on their individual and institutional experience. For example, an ICE plot 
would allow a reviewer to verify that when a selected applicant was scored with 0 bank-
ruptcies the applicant would get a lower likelihood of default than if they had 1 bankruptcy, 
and that the model would assign a higher likelihood of default as the number of bankruptcies 
increased to 2, 3, 4 and so on.

For models that are deemed to meet conceptual soundness requirements, the validation teams also 
review the model monitoring plan proposed by model developers. The plan is intended to ensure that 
the model is operated safely and within the firm’s risk tolerance. Monitoring plans identify key risks 
related to the use of the proposed model, define metrics and processes for monitoring those risks, and 
define steps to be taken when, for example, substantial changes in performance or data or score dis-
tributions occur. Factors that are critical in the conceptual soundness review—such as the model’s use 
case, architecture, and level of complexity—shape model monitoring frameworks and in some firms, 
stakeholders report that review of monitoring plans is part of the conceptual soundness review.

4.2.2.2 Relying on Post Hoc Explainability Techniques and Tools
Although the mathematical and theoretical underpinnings of explainability tools now in use 

are hardly new and approaches like PDP and ICE plots are derived from analyses used with tradi-
tional underwriting models, the prominence of explainability techniques to understand and manage 
machine learning underwriting models is a relatively recent development.94 To date neither firms 
nor their regulators have had to articulate a consistent formal framework to govern the evaluation 
of these tools, although banks typically will perform some level of assessment before authorizing 
model development teams to use particular techniques and are likely discussing them with examin-
ers in the context of regulatory reviews of machine learning underwriting models. 

One approach to ensuring that lenders relying on post hoc tools are appropriately assessing and 
managing risks related to their use is to treat them as a separate model for MRM purposes.95 This 
would require that each use of a tool—whether it be to help produce adverse action notices or illu-
minate the conceptual soundness of a model—be separately reviewed, validated, and monitored. In 
other words, users would have to demonstrate the tool’s fitness for use in the proposed application 
by demonstrating conceptual and technical soundness, although the specific components of each 
inquiry and their overall rigor could be tailored as appropriate given the nature of the model at issue 
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BOX 4.2.2.2.1   FINREGLAB’S MODEL RISK MANAGEMENT EMPIRICAL RESULTS

FinRegLab’s analysis of model diagnostic tools in the 
risk management context assessed the ability of the 
tools to identify features that described a significant 
part of overall model behavior, including application to 
data from a different time period. Our results suggested 
that the tools could potentially be helpful to lenders 
when conducting some MRM analyses.

We started by assessing the tools’ fidelity, in this 
context whether they could reliably identify features 
that helped describe global model behavior. We used  
perturbation tests to determine whether changing the 
features identified by a particular tool as most important 
to model operations created a bigger impact on default 
predictions than perturbing random or closely related 
features. For each model type, we found that some 
tools beat those benchmarks, while others did not.96 

We then evaluated consistency across tools. The tools 
that performed the best on the fidelity tests tended to 
have greater consistency in results, and grouping similar 
or correlated features together helped to increase the 
consistency of the tool outputs particularly for models 
involving hundreds of features.

The last analysis analyzed the tool outputs when 
models were applied to an out-of-time data set. We 
found that a variety of approaches outperformed 
random benchmarks in identifying features that may 
explain deterioration in the models’ performance and 
assess whether such deterioration was driven by shifts 
in the population distribution, shifts in the underlying 
relationships among the features, or a combination of 
both factors.

and the risk rating it receives under each firm’s MRM policies. This approach may have benefits 
in the period before regulatory expectations are formalized in guidance or rules in that it allows 
firms substantial leeway in formulating tests and standards for assessing post hoc tools, while 
nevertheless providing regulators with consistent, reviewable documentation of pre-deployment 
assessments and monitoring information. However, depending on the nature and cadence of reval-
idation processes, the burdens of such an approach might appear particularly onerous to smaller 
institutions with less developed model risk management programs or less expertise in relevant data 
science fields.

Whether or not policymakers require post hoc tools to be individually and continuously validated, 
they might take a further step to articulate a consistent framework for evaluating individual uses 
of such tools. Defining a consistent set of target characteristics for post hoc tools might improve 
the overall rigor and consistency with which firms evaluate specific deployments of such tools and 
help generate a range of approaches to testing for each quality or assessment characteristic. In time, 
standardization of practice and oversight of explainability tools might help foster trust in the use of 
machine learning underwriting models.

In assessing potential frameworks and guidance for assessing post hoc tools, two aspects of 
the empirical research that FinRegLab conducted with Professors Blattner and Spiess may be par-
ticularly helpful. First, one of the challenges in applying explainability tools to complex ML models 
is that it is often infeasible to generate a complete explanation of the model’s operations in order 
to verify the explainability tools’ performance. Despite not knowing the ground truth explanation, 
however, we were able to design empirical tests that allowed us to compare several explainability 
techniques and vendor tools to each other and to objective benchmarks. 

Second, the primary qualities we studied—fidelity, consistency, and usability—may be a use-
ful starting point for thinking about and measuring the most critical qualities of explainability 
techniques. We viewed fidelity and consistency as threshold technical questions about the tools’ 
reliability, with fidelity playing the most important role. For example, if a tool cannot reliably 
identify features that are important to a particular aspect of a model’s operation, we would not 
necessarily expect or care whether its results were consistent with the results of some other tool 
in performing the same task. Usability is also a critical quality—indeed, in some ways ultimately 
the most critical for judging whether the tools can be used to assess or demonstrate regulatory 
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compliance—but also more complicated to define and evaluate. For instance, usability results 
may depend not just on the general nature of the information provided by a diagnostic tool and 
implementation choices made in its deployment, but also on what options are available to the 
user in responding to the information. 

Our findings demonstrate that lenders can systematically evaluate post hoc tools to determine 
their potential fitness for use. The qualities that we tested for and the techniques that we used 
to perform the analyses may provide a useful starting point in helping to think through important 
implementation choices for credit underwriting and other contexts. While the elements of our anal-
yses can be improved and expanded over time, defining a basic framework for what qualities are 
important to consider in choosing among tools and for how to test those qualities could be useful 
to both firms and regulators in moving toward more consistent implementation.

4.2.2.3 Broader Debates
As explainability techniques evolve and our understanding of them continues to improve, 

broader debates about demonstrating the conceptual soundness of machine learning models are 
continuing. For some, conceptual soundness is inherently tied to the analysis and justification of 
each feature and relationship in a proposed model as a means of testing underlying economic and 
behavioral theories. The fact that commonly used explainability techniques cannot directly and pre-
cisely map feature interactions within the most complex ML models prompts these stakeholders to 
question whether expectations regarding conceptual soundness (and other regulatory requirements 
as discussed in subsequent sections) can be satisfied in high stakes applications such as extending 
credit, at least absent using up-front constraints to create more transparency.97 Others argue that 
the composite picture of model behavior derived by using new post hoc analyses, tools, and infor-
mation can be sufficient to inform the responsible use of models using larger numbers of features 
and more complex architectures.98

This debate has its roots in a broader set of disagreements about the extent to which predictive 
models used for critical financial applications should be driven by human-led deductive processes 
or by patterns that are identified through inductive data analysis: 

For economists, few sins are more heinous than data-mining. It is the last resort of a scoundrel to 
engage in “regression-hunting”—reporting only those regression results which best fit the hypothesis 
the researcher first set out to test. It is what puts the “con” into econometrics. For most economists, 
such data-mining has unfortunate similarities with oil-drilling—a dirty, extractive business which 
comes with big health warnings.

For data scientists, the situation could not be more different. For them, the mining of data is a 
means of extracting valuable new resources and putting them to use. It enables new insights to 
be gained, new products to be created, new connections to be made, new technologies to be pro-
moted. It provides the raw material for a new wave of productivity and innovation, an embryonic 
Fourth Industrial Revolution.99

The evolution in conceptual soundness practices reflects similar tensions as the relative emphasis 
shifts as between interrogating the decisions that led developers to include particular features in the 
first instance and unpacking information about how the model behaves in practice, including identi-
fying how input features affect the model’s predictions. Both processes generally involve extensive 
analyses of data and alternative options, but in the ML context much of the critical information to 
describe the behavior of machine learning models is derived after the model is built. The shift affects 
not just what techniques are used at what times, but also potentially the relative emphasis placed 
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on understanding how versus why a model behaves as it does. Proponents of traditional approaches 
argue that analyzing the role of each individual feature and relationship in the model is preferable 
in part because it facilitates greater testing of potential scenarios and issues beyond the bounds of 
historical data. 

Existing guidance does not specifically address these conceptual questions in the context of 
machine learning or post hoc explainability techniques, but it emphasizes more broadly that all 
models are by definition “imperfect representations of reality that all involve varying degrees of 
uncertainty and inaccuracy” and acknowledges it may not always be practicable for statistical tests 
to unambiguously reject or accept hypotheses or to quantify the degree of uncertainty or inaccuracy 
presented by a given model. The guidance does not foreclose use of models in such circumstances, 
but rather emphasizes the importance of applying a variety of tests and analyses throughout the 
model development life cycle and of tailoring risk management strategies with models that present 
greater uncertainty, for instance by building in conservative assumptions, using supplemental mod-
els or approaches, and/or increasing loan loss reserves.100 

The guidance thus emphasizes both front-end and back-end analyses as critical to risk man-
agement. In practice, stakeholders emphasize that the approach for demonstrating the conceptual 
soundness of AI and machine learning models during initial development and validation will neces-
sarily be specific to individual model types and that acceptance of approaches to evaluating some 
types of models may be closer than others. For example, a consensus as to ensembles of tree-based 
models may be closer than one for neural networks, given that tree-based models have been more 
widely adopted in the lending context and can be somewhat less complex that neural networks. 

4.2.3 Governance Standards for Nonbanks
Stakeholders often praise the general utility of the MRM framework in fostering a range of 

responsible model development practices and rigor in the approval and monitoring of models.101 The 
transition to wider use of machine learning underwriting models has focused attention on a com-
mon thread in those conversations: the lack of formal model governance expectations for nonbank 
financial institutions. Some stakeholders suggest that the complexity involved in developing and 
operating machine learning underwriting models increases risks related to lack of parity between 
bank and nonbank requirements and heightens the urgency of the need to formalize expectations 
and oversight mechanisms for nonbanks regarding managing model-related risks through activities 
like pre-deployment model review and model monitoring. 

This gap in regulatory requirements does not mean that lenders outside the banking sector oper-
ate without safeguards regarding model-related risks, especially for models like underwriting models 
that expose the firm directly to financial losses and reputational risk. Indeed, core business incentives 
may lead nonbank lenders to adopt a range of model development and oversight practices that 
approximate some components of a bank model risk management program. Many nonbank lenders 
also enter into contracts with investors, bank partners, or others that require them to adopt bank-like 
model risk management practices.

Nevertheless, given the high stakes of credit underwriting and complicated issues that tran-
sitioning to ML underwriting models entails, a diverse group of stakeholders has suggested that 
amending existing law to impose basic governance expectations on nonbank adopters could be 
beneficial to borrowers, lenders, and the broader ecosystem. For example, they argue that such a 
change would both help to ensure that nonbanks are managing their models for a consistent range 
of risks in developing and deploying ML underwriting models and to level the playing field.102 It is 
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BOX 4.2.3.1   LEGISLATIVE INTEREST IN ALGORITHMIC IMPACT ASSESSMENTS

Legislators in both the European Union and the 
United States are looking to impact assessments as a 
core procedural safeguard when deploying machine 
learning and artificial intelligence in high-risk activi-
ties such as credit underwriting. Somewhat similar to 
environmental impact assessments, the basic idea is to 
require a detailed analysis of the potential impacts and 
risks of proposed AI/ML applications, develop detailed 
harm mitigation plans, consult with stakeholders before 
adoption, and engage in periodic monitoring.103

The EU Artificial Intelligence Act, which is expected 
to be finalized in 2024, requires a “fundamental rights 
risk assessment” for high-risk activities that will assess 
potential effects on individuals’ fundamental rights, on 
marginalized and vulnerable populations, and on the 
environment. AI/ML users must also articulate detailed 
harm mitigation plans and governance processes and

give relevant agencies and stakeholders notice and at 
least six weeks to provide input before finalizing and 
implementing the plans. If a detailed mitigation plan 
cannot be developed, the deployer is not permitted to 
implement the AI/ML application.104

In the U.S., the Algorithmic Accountability Act of 
2022 would impose similar procedural requirements on 
“automated decision systems” that are used by large 
companies to make critical decisions including financial 
services. The legislation would also require benchmark-
ing against previous decision-making processes. The 
bill has been introduced in both houses of Congress,105 
although it was not specifically referenced in a high-
level framework for AI legislation released by Senate 
Majority Leader Chuck Schumer in June 2023. A series 
of bipartisan forums on risk management and other AI 
topics were held in fall 2023.106

also possible that emerging efforts to legislate safeguards on the use of artificial intelligence and 
machine learning models society-wide could expose both banks and nonbanks to new, broadly 
applicable procedural requirements such as algorithmic impact assessments (see Box 4.2.2.2.1). It 
is not yet clear how such broadly applicable requirements would relate to existing laws governing 
financial institution model risk management.

4.2.4 Validating Vendor-Provided Models and Model Management Tools
Stakeholder interviews suggest that addressing the governance challenges in working with vendor- 

provided models and tools could also have a critical effect on ML adoption for credit underwriting, 
particularly among smaller banks. When banks outsource certain functions to outside vendors, they 
are still accountable for compliance with substantive requirements that would apply if they were to 
conduct the vendor’s activity directly.107 These expectations require additional oversight activities to 
monitor the vendor’s adherence to those standards and respond as needed to potential issues related 
to the vendor’s performance.108 Prudential regulators have also issued more specific guidance with 
regard to technology vendors and information security risks.109 Given these expectations, financial 
institutions typically create risk management programs to conduct due diligence and ongoing moni-
toring of vendor relationships. 

Although vendor risk management is typically treated as a separate risk management discipline, 
financial institutions that use underwriting models or supplementary tools provided by third parties 
may encounter additional challenges in model risk management. These issues take on heightened 
prominence in discussions about the adoption of ML underwriting models. Use of such models 
tends to be concentrated among the very largest banks and certain nonbank lenders with substan-
tial technology resources. While many factors may account for the reluctance of lenders outside 
those groups to use machine learning underwriting models, their inability to support the expertise 
needed to develop and operate such models is likely a significant factor. Indeed, resource constraints 
have led many smaller lenders—including small banks and credit unions—to rely on vendors even 
for logistic regression underwriting models.110 
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In response to these resource limitations, a number of companies have begun offering model 
development and support services. These range from large established firms such as credit score 
providers to smaller firms created in response to growing interest in using AI and machine learning 
in financial services and other sectors. Although these firms take different technological approaches 
and have different products and strategies,111 these businesses can help lenders overcome expertise 
gaps in developing models and support their responsible use by providing model management tools, 
consulting services, or some combination of the two. Some vendors also focus on direct provision of 
ML underwriting models to clients.

However, model validation under bank regulatory expectations can be more challenging for lenders 
that rely on vendor-provided machine learning underwriting models and/or model management tools. 
Information-sharing practices can vary widely, with some vendors offering their clients high-level 
descriptions of their approach to protect their intellectual property and competitive interests, as has been 
the accepted practice for national credit score providers,112 and others offering extensive documentation 
that has been designed to help smaller lenders fulfill their model risk management obligations. Although 
regulatory guidance recognizes challenges relating to financial institutions’ access to information about 
vendor-provided models,113 ensuring proper transparency about model development activities— 
including how the models were produced, the data and technologies used in development, and the 
judgments made—is essential since standards for reviewing and validating an underwriting model do 
not change just because the model was developed by a vendor. Other challenging aspects can include:

 »  Underlying Technologies: Absent access to vendors’ source code, lenders may lack 
insight into and/or familiarity with technologies used to develop vendor-provided models 
to evaluate whether the choices the vendor made in implementing the selected technol-
ogies are consistent with their needs and obligations.114 This may go beyond the choice of 
basic model architecture or open-source model development packages to include questions 
such as what techniques were used to debias models. 

 »  Conceptual Soundness and Other Aspects of Risk Management: Lenders using 
vendor-provided models need to be able to assess whether the models meet the lenders’ 
standards for performance and credit risk tolerance, as well as to defend the underlying 
analytical framework used by the model to generate default predictions. This requires 
the generation of substantial information about the estimated relationships in the model, 
including potential use of post hoc tools as discussed above. 

 »  Consumer Compliance: Lenders using vendor-provided models need to be able to assess 
whether the model as a whole and individual data fields used in the model comport with 
their consumer compliance obligations. For example, lenders need to be comfortable that 
appropriate adverse action notices can be generated and that vendors have taken appro-
priate steps to mitigate disparities across protected class groups throughout the model 
development process.

 »  Data Use: Vendors may develop models using data aggregated from a variety of sources and 
analyses. Users of vendor models need to be confident that such data is accurate, authorized 
for use, and does not violate privacy or other requirements. Where vendors use “big data” 
strategies to support model development, they themselves may rely on externally provided 
data sets to leverage socio-economic, behavioral, geographic or transaction-based informa-
tion. In extreme cases, vendors may be subject to limitations on their ability to share details of 
data and analyses procured from other parties.115

In this context, the process of conducting vendor diligence often requires the type of expertise 
the lack of which may have led the financial institution to seek outside support in the first place.116 



Explainability & Fairness in Machine Learning for Credit Underwriting   Policy Analysis
35

Section 4: Model Risk Management

In the case of developing machine learning underwriting models, this gap in expertise can be pro-
hibitive since the financial institution’s analytics staff may have little experience with developing 
and operating machine learning models, using the range of common techniques and tools for mon-
itoring and managing such models, or interpreting and explaining their outputs. 

As substantive regulatory expectations clarify for ML models, some stakeholders have noted that 
increases in direct supervision of vendors by federal regulators could both ease burdens on small 
firms and help regulators determine whether particular practices have the potential to transmit risk 
across the market via use of common proprietary modeling techniques or tools.117 While examinations 
are generally confidential, vendor supervision could help raise the floor on vendors’ compliance and 
risk management practices and drive them to enhance their support of potential clients’ compliance 
and risk management obligations. Further, agency examiners may face fewer constraints in reviewing 
competitively sensitive information than potential clients. A more ambitious option– which some 
vendors support—would be to create a certification regime to be administered by a standard setting 
organization so that vendors’ technologies, governance, and controls receive periodic review without 
requiring each client to conduct full independent assessments.118

Federal banking regulators released updated joint third-party risk management guidance in June 
2023 that acknowledged limitations that banks may face in obtaining desired due diligence from 
vendors and noting that alternative risk management strategies include obtaining information from 
alternative sources, implementing additional monitoring or controls, or considering the use of other 
vendors. The guidance also noted that banks may use the services of industry utilities or consortiums, 
consult with other organizations, or engage in other supplemental joint diligence efforts, consistent 
with antitrust law. However, it emphasized that the conclusions from such supplemental activities 
must be considered in light of the individual bank’s situation and that understanding the nature of 
the supplemental activities itself should be treated as a risk management activity, since use of such 
external parties “does not abrogate the responsibility” of each bank to manage its third-party rela-
tionships. The guidance indicates that the agencies intend to produce additional resources to assist 
community banks.119
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5. ADVERSE ACTION NOTICES
Adverse action notices are the most direct and concrete transparency requirement for underwrit-

ing models in federal consumer financial law, requiring lenders who reject credit applications, take 
other types of “adverse action,” or charge higher prices based on credit report information to provide 
individualized explanations to the affected applicants.120 The laws were primarily intended was to 
discourage discrimination, enable error correction, and educate borrowers about the basis for credit 
decisions that impacted them, but the disclosures also serve broader “sunshine” and procedural fair-
ness goals. In recent years, financial services stakeholders have debated whether and how the notices 
could be changed to make them more practically actionable in helping applicants identify steps that 
they can take to increase their chances of obtaining credit or better terms in the future. 

The challenge of accurately explaining complex models to individual applicants has been at the 
forefront of debates about whether and how machine learning can be fairly and responsibly used 
in the context of extending consumer credit. This section begins by summarizing the regulatory and 
operational context for adverse action requirements before addressing the following topics:

 » Producing reliable descriptions of the behavior of machine learning models; 

 »  Providing more information about how and why particular features affected the credit decision; 

 »  Identifying plausible paths for individual consumers to increase their chances of credit 
approval; and

 » Incorporating non-traditional underwriting data.

5.1 Regulatory and Operational Context 
As part of consumer credit reforms in the 1970s, the Equal Credit Opportunity Act (ECOA) man-

dated that lenders provide disclosures that state their “principal reasons” for denying applications 
or taking other types of “adverse action” such as reducing the credit line of an existing borrower.121 
The Fair Credit Reporting Act also imposed disclosure requirements for adverse actions taken based 
on information in credit reports or obtained from other third parties,122 and Congress later amended 
the law further to require lenders that charge higher prices based on credit report information to 
disclose the “key factors” that are negatively affecting the credit scores of the affected consumers.123 
This section summarizes (a) the core policy purposes that motivated the requirements; (b) current 
law and guidance; (c) compliance practices; and (d) key issues or risks in adverse action compliance 
when machine learning models estimate applicants’ likelihood of default.
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5.1.1 Policy Motivations 
Contemporaneous accounts reflect three primary goals for the disclosure requirements:124 

 »  Discouraging discrimination: The disclosures are intended to dissuade discrimination 
by requiring lenders to articulate the bases on which they are making credit decisions. As a 
secondary matter, the notices can facilitate review by disclosure recipients, public interest 
groups, regulators, and others to help identify where further investigation into potential fair 
lending violations is warranted. 

 »  Enabling error correction: Describing the primary bases for an adverse decision and 
key factors that are negatively affecting an applicant’s credit scores can help the recipient 
detect certain types of errors and seek corrective action. This is especially true where the 
disclosure highlights errors in a credit report—such as listing a prior student loan default by 
a consumer who never had such a loan—but may also occur with information that comes 
from other sources.125

 »  Educating and empowering consumers in managing their finances: Providing specific, 
point-in-time information about why a lender concluded that an applicant’s default risk war-
ranted declining an application or charging higher prices may promote self-improvement by 
helping recipients understand how past financial behavior or their current financial position is 
affecting their access to credit. More recent policy debates about adverse action notices have 
increasingly focused on a stronger form of this concept—specifically designing the disclosures 
to provide recipients with tailored, forward-looking information about how to adapt their 
financial behavior to increase their chances of accessing credit in the future.126 

In practice these goals have never been well defined and can at times suggest different policy 
directions, which leaves room for debates about how the adverse action notice requirements can 
or should be implemented. For example, disclosures that are “true to the model” (as discussed in 
Box 2.3.2.1) and that provide more specific descriptions of the features that drove a particular credit 
rejection may be most helpful for purposes of discouraging discrimination and enabling error cor-
rection, while disclosures that are “true to the data” and that provide simpler feature descriptions 
may be more effective in helping consumers understand and take action to improve their chances of 
future approvals by a broad range of lenders over time. Such tensions are not a function of the type 
of model used to estimate an applicant’s likelihood of default, but questions about the explainabil-
ity of machine learning underwriting models have increased attention to broader debates about the 
purposes and effectiveness of current requirements, as discussed in Section 5.2. 

5.1.2 Existing Law and Guidance
Unlike model risk management, adverse action requirements apply broadly to both bank and 

nonbank lenders, although regulatory supervision levels can vary in practice.127 ECOA’s disclosure 
provisions apply broadly to all adverse credit decisions, whereas FCRA requirements apply where 
lenders have based their decisions in whole or in part on information from a source other than the 
applicant or its own files.128 In initial implementation, lenders voiced significant concerns about 
revealing competitively sensitive information and the burdens of generating individualized disclo-
sures. Over time, the framework evolved as regulators issued guidance to address issues related to 
the use of automated underwriting systems and third-party credit scores. This section summarizes 
the requirements relevant to providing compliant disclosures to recipients of adverse action notices 
in the context of machine learning underwriting models. 
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ECOA and its implementing regulations require lenders to provide a specific and accurate 
description of their “principal reason(s)” for making an adverse decision.129 The specificity require-
ment would not be satisfied, for example, by stating only that the applicant did not satisfy the 
lender’s internal standards or have a sufficient credit score. With regard to accuracy, the content of 
the required disclosures must “relate to and accurately describe the factors actually considered or 
scored by” lenders.130 However, existing law does not set out metrics or thresholds for evaluating 
compliance with these standards.

Regulations and guidance also require only a general description of what factors affected the 
decisions, rather than how or why the disclosed reason mattered in their overall analysis. Lenders 
are not required to describe the direction or magnitude of the factor in question, such as whether 
a particular factor was too high or too low or which specific metrics were used to measure it (e.g. 
30- vs. 90-day delinquencies).131 Although sample reason codes that are provided in an appendix to 
ECOA’s regulations provide information about how and why some factors affect consumers nega-
tively, other codes are less clear (See Box 5.1.2.1). Regulatory guidance also specifically emphasizes 
that users of credit scoring systems must report the actual reason for the credit decision “even if 
the relationship of that factor to predicting creditworthiness may not be clear to the applicant.”132

For lenders that use credit scoring systems, supplementary guidance identifies three acceptable 
ways to identify the principal bases of the adverse credit decision with regard to an individual applicant:

 »  benchmarking the individual against applicants whose total score was at or slightly above 
the minimum passing score and disclosing the factors for which the individual was furthest 
below the average for that comparison group; 

 »  benchmarking the individual against the average for all applicants and disclosing factors on 
which the individual performed least well as compared to that average; or

 »  “[a]ny other method that produces results substantially similar to either of these methods.”133

Thus, the approach gives lenders latitude as to how they produce information about an adverse 
credit decision. A third common benchmark is to focus on the factors for which the applicant fell 
furthest below the maximum achievable score under the model.134

The guidance generally disfavors providing more than four or five reasons to explain the adverse 
action or pricing decision.135 The adverse action notice must include any factor that required an auto-
matic denial under the lender’s policies, such as a prior bankruptcy or the fact that the applicant is  
a minor.136 

The Consumer Financial Protection Bureau issued compliance circulars in 2022 and 2023 that 
focused on the use of machine learning underwriting models, post hoc explainability techniques, 
and non-traditional data sources in consumer credit.137 The first circular emphasized that super-
vised entities must validate the accuracy of their chosen methodology for producing adverse action 
notices. It suggested that validation “may not be possible with less interpretable models,” but did 
not discuss any particular methodologies or thresholds for determining the accuracy of individual 
post hoc explainability techniques.138 The second circular warned against misuse of the model rea-
son codes and emphasized that specificity in adverse action disclosures “is particularly important 
when creditors utilize complex algorithms” that rely upon data gathered outside of consumers’ 
applications or credit files.139 
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5.1.3 Compliance Practices
Given the flexibility provided by the existing regulations in determining which features were 

“principal” for a particular applicant and how to describe those features in the disclosure, lenders 
must make a series of discretionary judgments in building their adverse action compliance processes 
and systems. 

Lenders, credit scoring developers, and other companies that assist in disclosure production often 
differentiate between reasons that are based on simple categorical rules (often called “strategic reason 
codes”) and those that reflect how a scoring or underwriting model predicted the applicant’s indi-
vidualized default risk (“model-based reason codes”). Users of traditional underwriting models may 
generate model-level reason codes in a variety of ways. Firms that use relatively simple underwriting 
approaches, such as applying a score cutoff such that anyone below FICO 650 will be denied, are likely 
to rely on adverse action reason codes provided by their score provider (which in turn often result 
from use of a scorecard system).140 Firms that rely on proprietary regression models may base model- 
level reason codes on the model coefficients or use scorecard methodologies to clarify the specific 
contribution of features to the score generated for a particular applicant. 

Lenders often aggregate the individual strategic and model-level reason codes that are iden-
tified in their internal processes into higher level categories that are described on the actual 
disclosures. These taxonomies can potentially facilitate the use of simpler and more intuitive 
language in the final disclosures, increase the consistency of terminology across different models 
and scores, reduce concerns about disclosure of competitively sensitive information, and facili-
tate automation processes. In some cases, the higher level descriptors may be based on the list 
of sample reasons that is provided in an appendix to ECOA’s implementing regulations (see Box 
5.1.2.1) or on versions that are developed by the compliance and legal teams of individual lenders, 
particularly in larger institutions. 

BOX 5.1.2.1   SAMPLE REASON CODES

The sample reason codes that are provided in an 
appendix to ECOA’s implementing regulation vary as 
to how much explanation they provide about how and 
why a factor contributed to an adverse action:

 » Credit application incomplete

 »  Insufficient number of credit  
references provided

 »  Unacceptable type of credit  
references provided

 » Unable to verify credit references

 » Temporary or irregular employment

 » Unable to verify employment

 » Length of employment

 »  Income insufficient for amount of  
credit requested

 » Excessive obligations in relation to income

 » Unable to verify income

 » Length of residence

 » Temporary residence

 » Unable to verify residence

 » No credit file

 » Limited credit experience

 » Poor credit performance with us

 »  Delinquent past or present credit obligations 
with others

 » Collection action or judgment

 » Garnishment or attachment

 » Foreclosure or repossession

 » Bankruptcy

 »  Number of recent inquiries on credit  
bureau report

 » Value or type of collateral not sufficient

 » Other, specify: ___________________________________
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At the same time, some lenders are also choosing to provide more detailed descriptions of 
important features than is required under existing regulation in an effort to increase their educa-
tional value. For instance, some lenders may view stating that an applicant had “too many credit 
card payments more than 30 days late” as more useful in understanding the adverse decision and 
helping consumers alter their financial behavior than simply listing “delinquent past or present 
credit obligations with others.” 

5.1.4 Key Risks and Compliance Issues for Adverse Action Notices
The growing use of machine learning underwriting models has focused attention on certain key 

issues and risks related to adverse action compliance. These issues and risks are not necessarily unique 
to ML underwriting models, but they may be further accentuated as model complexity increases. 
They include:

 »  Operational Complexity and Model Transparency: As described in Section 2, con-
cerns about the transparency of machine learning models derive from their reliance on 
hundreds or thousands of features (sometimes including “latent features” generated by 
the ML algorithm), complex architectures, and more complex relationships within the 
data. Responsible design, development, and use of machine learning models requires an 
array of technical and operational decisions, including whether and how to use post hoc 
explainability techniques.141 These approaches are relatively new when compared to the 
processes they replaced, and are evolving rapidly. Issues related to model transparency 
are context specific depending on the developer’s choice of machine learning models and 
strategies for managing explainability concerns. 

 »  Accuracy: Lenders have a general obligation to provide accurate adverse action disclosures,  
although how accuracy should be measured or what level of accuracy is required has not 
been clearly articulated. The transition to machine learning underwriting models has focused 
attention on whether available methods for describing model behavior are sufficiently reli-
able to provide content for adverse action notices that satisfy regulatory expectations.

 »  Reduced Utility: The shift to using models with more variables and more complex fea-
tures may reduce the degree to which identifying four or five individual factors explains the 
adverse credit decision. Aggregating model-level information to group related features into 
broader categories can potentially overcome this concern but can bring its own challenges 
as discussed further below.

 »  Risk of Information Compression and Obfuscation: Aggregation of model-level 
codes into broader categories can help to make adverse action notices for ML models 
more meaningful, but the process can also be more challenging to execute effectively 
since expressing the key drivers of an adverse decision from a model with 15 input features 
requires less compression of information than one from a model with 1,500 input features. 
Use of models with substantially more complexity may also provide more opportunities 
for lenders to conceal information they would prefer not to disclose because it might 
attract unwanted scrutiny or present competitive or other risks if known to the public.142

5.2 Key Policy Issues for Adverse Action Notices and Machine Learning Models
As the adoption of machine learning models accelerates, stakeholders are debating both the use 

and sufficiency of post hoc explainability tools in the adverse action context and the potential value 
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of changing current market practice and regulatory frameworks to make disclosures more useful to 
consumers. This section considers key policy issues concerning producing reliable descriptions of the 
behavior of machine learning models, providing more information about how and why particular 
features affected the credit decision, identifying plausible paths for applicants to increase their 
chances of approval, and incorporating non-traditional underwriting data.

5.2.1 Producing Reliable Descriptions of the Behavior of Machine Learning Models 
Whether they use interpretable or “black box” structures as discussed in Section 2.3, most lenders 

that have adopted ML underwriting models are likely to deploy post hoc explainability techniques 
to help generate the adverse action disclosures. The CFPB’s 2022 circular highlighted the importance 
of validating the accuracy of post hoc tools for this purpose but did not discuss specific explain-
ability techniques, validation methodologies, or thresholds for accuracy. Accordingly, firms are using 
their best judgment in determining which techniques and implementations are sufficiently reliable 
for compliance purposes.143

For the same reasons discussed in Section 4.2.2.2, our empirical framework and methodologies 
may be helpful to stakeholders in assessing the fidelity and consistency of particular post hoc tech-
niques in explaining individual underwriting decisions. We applied two tests to assess the fidelity 
of various techniques when applied to a sample of consumers whose default risks were predicted 
to exceed the thresholds for approval. First, we compared the effect of perturbing the values of 
features that were identified as most important to the consumers’ individual default predictions 
relative to perturbing sets of random or closely correlated features. Second, we used a “nearest 
neighbor” test to assess whether other consumers who were similarly situated based on the import-
ant features had similar default risk predictions. We also evaluated the extent to which different 
tools rank ordered the same four features as most important to the individual consumers’ default 
predictions, with or without grouping similar or correlated features together.144

While the elements of our analyses can be improved and expanded over time, our substantive 
results were encouraging. We found that some but not all tools reliably identified features that were 
important to different models’ risk predictions for individual consumers. The differences in perfor-
mance on the fidelity tests tended to be largest when the tools were applied to complex models. 
On consistency, the highest fidelity tools tended to identify more of the same features as important 
than the tools that performed poorly on fidelity tests, although there were some differences even 
among the high fidelity tools, especially when they were applied to more complex models. Consis-
tency improved substantially once we accounted for broader feature families and correlations.

At the same time, the results underscore the importance of making thoughtful choices in applying 
and deploying particular explainability tools to complex models, since there were variations in per-
formance even within different implementations of a particular technique. For example, while many 
tools relying on SHAP feature importance measurements performed well, some did not. These results 
align with other research suggesting that some explainability tools and implementations tend to  
perform better than others, in part depending on the use case and in part on execution details.145 

The findings also highlight the importance of focusing on broader relationships in the underlying 
data when applying explainability techniques and interpreting their outputs. Because features that 
a particular tool identifies as “important” serve as approximations for patterns in model behavior 
that are linked to both the identified features and other features that are correlated with them, 
other features may also be making important contributions to model outcomes. Thus, assuming a 
single feature within a correlated cluster is the sole driver of model behavior is likely incomplete. 
This speaks to the importance of lenders having a strong understanding of the data that are being 
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used to build, train, and deploy ML models for credit underwriting decisions, and of continuing to 
refine approaches to addressing differences between explanations for the same model produced by 
different explainability tools.146 

Further research would be helpful to inform market practice as academics and private sector 
stakeholders continue to iterate on existing options and develop new approaches, many of which 
are focused on attempting to account for correlations among features in more nuanced ways.147 It 
is also important to note that some degree of variation in fidelity and consistency even among high 
performing tools is to be expected in light of the nature of machine learning models and the range of 
decisions that must be made in the course of deploying particular explainability techniques. Reason-
able differences in choices about which implementation of SHAP to apply to a particular model type, 
the size of comparison samples, which benchmark to use, and other technical details may introduce 
a certain amount of inconsistency relative to results from companies that made different decisions.148 
This is particularly true where ML models involve substantially larger numbers of variables, since the 
impact of any one feature is likely to be smaller than in the context of a traditional regression model. 
The existing regulatory guidance on adverse action notices already contemplates similar reasonable 
variations by recognizing the legitimacy of using different comparison groups as a benchmark to 
determine which features played the biggest role in shaping individual applicants’ risk predictions. 

Our findings also suggest that the common practice of grouping related features together to pro-
duce higher level adverse action reason codes could be particularly important in the machine learning 
context, both as a means of addressing some of the technical challenges created by the presence 
of large numbers of correlated features and as a strategy for explaining more of machine learning 
models’ overall operations to consumers. Using the analogy of machine learning models to a box of 
128 Crayons helps to illustrate the potential impact. Assume that three lenders make reasonable but 
slightly different implementation choices in using an explainability technique to identify the primary 
bases of a credit decision for the same applicant from the same machine learning model, and receive 
results that produce slightly different rank orders listing three closely linked or correlated features 
(crimson, cherry, and ruby) as most important to an individual consumer’s risk prediction. Assume a 
fourth lender uses an aggregation process to group together related features in generating the expla-
nation, yielding an explanation of red and leaving more room to highlight the role of additional factors 
such as blue and green. While all of the methodologies may be reasonably accurate, the aggregation 
approach can potentially produce more consistent and meaningful disclosures for consumers that 
convey more information about the model’s operation overall.

This analogy also helps to highlight that technical accuracy is not the only consideration in mak-
ing adverse action disclosures more understandable and actionable for applicants, particularly for 
purposes of identifying errors in credit report data and making changes to their finances to improve 
their chances of accessing lower cost credit over time. The next section discusses other debates 
concerning the optimal level of precision that have particular implications for machine learning 
underwriting models.

5.2.2  Providing More Information about How and Why Particular Features Affected the Credit Decision
Beyond answering methodological questions about the reliability of information generated by 

the current generation of post hoc explainability techniques, the transition to machine learning 
models is focusing renewed attention on questions about the importance and feasibility of disclos-
ing granular information about individual models’ operation. Many of these issues are rooted in the 
existing regulatory guidance, but the nature of ML models and current explainability techniques 
raise additional questions about what level of specificity is both required for legal compliance and 
optimal from a policy perspective.
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As described above, the existing adverse action regime ensures that rejected applicants receive 
basic disclosures about what input features played a principal role in their default prediction, but 
does not require an explanation of what specific metrics were used (e.g., 30-day versus 90-day delin-
quencies), how various features interacted with each other within the model, or why a particular 
feature is predictive of higher default risk. Some stakeholders argue that such details could be use-
ful to consumers both in identifying and correcting errors in historical credit data that was used to 
evaluate their applications and in better understanding what behavioral and financial changes might 
help to increase their chances of accessing affordable credit over time.149 The CFPB’s 2023 circular 
warned against using “reasons that are overly broad, vague, or otherwise fail to inform the applicant 
of the specific and principal reason(s) for an adverse action,” particularly with regard to data sources 
that consumers are unaware of being used for underwriting purposes, but did not provide a detailed  
discussion of technical and policy questions beyond potential obfuscation concerns.150

The potential value of more detailed explanations could be heightened in the machine learning 
context to explain the operation of more complicated models, yet also harder to achieve. For example, 
because machine learning models may consider non-monotonic and non-linear relationships, they 
may treat certain features such as credit utilization as increasing risk of default in some situations and 
reducing it in others.151 An adverse action notice that simply indicates that “use of available credit over 
time” was a principal factor in rejecting a particular consumer would not help the applicant under-
stand whether reducing or increasing utilization would strengthen their application. However, lenders 
would potentially have to develop a more complicated and tailored menu of reason codes to match 
different consumers’ situations. 

Another example is the way that machine learning models’ predictions may be driven by latent 
features created by the learning algorithm or by interactions of features within the model, some 
of which may be non-intuitive. Increasing the complexity of the model—the range of relationships 
used to predict someone’s default risk—may make what happens within the model relatively more 
important to serving certain goals of the adverse action regime, such as conveying accurately why 
the lender made a particular decision and enabling consumers to adjust future behavior accordingly. 
However, while feature importance measures such as SHAP are designed to measure the cumulative 
importance of input features, they may still have difficulty pinpointing the precise feature interac-
tion within the model that was critical for an individual consumer’s prediction.152

Take the example of a machine learning algorithm that determined that late payments on a 
mortgage loan are associated with much greater default risk where mortgage loan balances are 
higher (e.g., $200,000 rather than $50,000). Listing mortgage loan delinquencies and balances as 
separate principal factors may not fully convey that the combination of the two drove a particular 
loan rejection, such that addressing both components may be necessary to substantially reduce pre-
dicted risk levels. If fully conveying the feature interaction is considered critical for compliance, this 
raises questions about the precision of particular techniques in being able to identify and measure 
such interactions and of the need for more complex and varied reason codes.153 

These considerations as well as a broader interest in promoting consumer financial well- being 
are fueling interest in increasing the specificity of adverse action disclosures, either as a matter of 
market practice or regulatory requirement. However, defining and achieving the optimal balance of 
specificity for both traditional and machine learning models is challenging due to both policy and 
practical considerations. For example, as discussed in the previous section, there are valid policy 
and technical arguments for aggregating related features into somewhat higher level categories to 
provide more consistent messaging and convey more of the model’s overall operations, particularly 
in the context of machine learning models. As noted in Section 5.1.1, the level of specificity that will 
best help applicants identify whether there may be errors in the underlying data used by the lender 
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may also be different than the level of specificity that best educates applicants about ways to 
improve odds of acceptance going forward.154 

Policy judgments about the optimal level of specificity to inform applicants’ future actions are par-
ticularly complicated. Narrower, more specific information may help recipients better understand how 
to improve their chances of approval in some situations but at times may also increase the risk that 
disclosure recipients miscalibrate their future activities. In the example with the model that rejected 
particular applicants because of delinquencies on a mortgage loan with a high balance, consumers 
who read the disclosure to imply that they should prioritize paying down their mortgage balance 
even at the expense of incurring delinquencies on other loan types might still find that they struggle 
to access credit going forward. Moreover, by the time the consumer seeks credit again, the lender’s 
model may have changed or the consumer may apply to a different company. Such factors may coun-
sel toward crafting disclosures that provide broader, more generalized information that is “true to the 
data” rather than “true to the model.”155 The next section discusses more radical suggestions to add or 
shift the adverse action regime specifically to focus on producing actionable, forward-looking advice 
rather than concentrating on explaining the lender’s most recent underwriting decision.

5.2.3 Identifying Plausible Paths for Applicants to Increase Their Chances of Approval
Discussions of how to comply with adverse action requirements in the machine learning con-

text have intersected and overlapped with broader debates about whether to shift the focus of 
the disclosures from retrospective documentation of the lender’s recent underwriting decision to 
providing forward-looking, actionable information about how to improve the applicants’ odds of 
accessing affordable credit in the future. Such ideas gathered significant interest in a tech sprint 
that the Consumer Financial Protection Bureau organized in 2021.156 Yet while intuitively appealing, 
supplementing the existing disclosures or replacing them with forward-looking advisory material 
raises a number of complex issues for both traditional and ML models.

At a conceptual level, providing advice about how to make changes that would result in an approval 
or lower pricing requires answering a different question than the one posed by existing requirements. 
The current system asks what factors played a principal role in the model’s prediction that the appli-
cant presented high levels of default risk. An advisory regime would ask what factors the applicant 
can most reasonably improve to reduce their predicted default risk at some point in the future. The 
answers to these questions are not necessarily the same, as illustrated by the example of a lender that 
weighs prior bankruptcies heavily in its credit decisioning models: The fact of a prior bankruptcy may 
carry the most weight in the model overall, but since bankruptcies remain on credit reports for seven 
to 10 years by law, an advisory regime would likely focus on a different set of factors. The analysis 
required is thus far more complex than under current regulatory requirements because it must not 
only account for the individual and collective weights of the features but also their susceptibility to 
future change over particular time horizons. 

Moreover, depending on the model and the time frame selected, there may be no set of factors 
that would be sufficient to offset the principal factors (e.g., the recent bankruptcy) or the consumer 
might be required to make a large number of marginal changes across multiple factors to produce a 
sufficient offset, particularly in connection with machine learning models given their size and struc-
ture. (See Box 5.2.3.1). Thus, the number of consumers for which plausible paths are available and 
the number of plausible paths identified can vary significantly depending on the underlying model, 
the consumer’s circumstances, and the parameters set for the analysis. Shorter time frames may 
be more consistent with consumers’ desire to obtain credit and more likely to spur them to action 
where plausible paths are identified, yet they are likely to reduce the number of plausible paths 
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BOX 5.2.3.1   FINREGLAB’S EMPIRICAL TESTING

To test the use of explainability techniques in iden-
tifying actionable paths to acceptance in our empirical 
study, we asked the participating companies to recom-
mend a small set of actions (preferably no more than 
four) that would cause each of the consumers in the 
sample used for the adverse action analysis to reduce 
the likelihood of default sufficiently to meet approval 
thresholds within one year.157

The recommended number of changes was higher 
than expected, averaging about eight changes per 
consumer even for the relatively simple models. For 
more complex models involving hundreds of features, 

producing a large drop in the predicted probability of 
default required changing large numbers of features 
and/or making changes that were large in magnitude 
relative to the variations observed in the data. 

The number of changes required might have been 
smaller if the inquiry had been restricted only to credit 
applicants who were “near misses.” However, the results 
underscore the importance in the machine learning 
context of accounting for correlations among features 
when identifying and describing feasible strategies for 
consumers to increase their chance of future loan accep-
tance rather than focusing on a few features in isolation.

because the number of features that can be changed quickly is lower. Using different parameters 
for different loan products and sizes may be logical, but could potentially increase the complexity 
of the analyses and disclosures.

Shifting the focus of the disclosures also raises a number of policy issues regarding the presen-
tation of the advisory information, starting with whether to replace or supplement the current 
disclosures. Doubling the amount of information that is presented on adverse action notices may 
risk confusion, overload, and disengagement,158 yet narrowing the focus solely to forward-looking 
information may undercut other policy goals of the existing regime (such as error identification and 
correction) and raise questions about what information to provide to consumers where paths to 
acceptance within the specified time period are highly complex or unlikely. 

Consumer user testing could be instrumental to evaluating different disclosure options, particu-
larly with regard to static disclosures (whether delivered on paper or electronically). In the CFPB tech 
sprint, some participants explored the potential for dynamic online disclosures that would allow 
consumers the opportunity to understand how different combinations of changes over different 
time periods could potentially affect their risk assessments. Such information may be accessed by 
fewer consumers but provide substantially more useful information. 

A final consideration is how to account for the fact that lenders’ credit criteria may change over 
time due to a broad range of factors (including refinements to underwriting models, changes in 
economic conditions, and shifts in business and product strategies) and that consumers may ulti-
mately apply to a different company that uses a different model. While advisory disclosures could 
potentially include warnings to this effect, lenders would likely seek assurances against liability in 
the event that applicants are later rejected a second time.159 More broadly, as discussed in Box 5.2.3.1 
and Section 5.2.2, such factors may counsel toward crafting any forward-looking disclosures to pro-
vide broader, more generalized information that is “true to the data” rather than “true to the model.”

5.2.4 Incorporating Non-Traditional Data
Similar to Section 2.2.3’s discussion of the implications for fairness and inclusion of building 

machine learning underwriting models to use non-traditional data sources, it is important to note 
that debates about applying adverse action disclosure requirements to ML underwriting models are 
heightened where the models incorporate new data sources. 

As discussed in that section, potential non-traditional sources of underwriting data can range from 
financial information that is not captured in traditional credit bureau records (such as cash-flow data 
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from a person’s bank accounts or rent and utility payment history) to behavioral data from a wide 
variety of activities (such as an applicant’s interaction with the lender and digital footprint). When 
deciding whether to use such information, lenders assess a broad range of factors, including predic-
tiveness, fairness and inclusion effects, and various other business and risk considerations. The fact 
that lenders must also disclose information about the data sources in adverse action notices can also 
play a significant role, not just with regard to technical compliance but also the broader reputational, 
regulatory, and competitive considerations involved in disclosing the use of particular data elements.

For example, while the sample reason codes that are provided in ECOA’s implementing regulations 
may be relatively easy to adapt to some new sources of financial information,160 lenders who decide 
to use behavioral information may need to craft new disclosure language. In addition to considering 
the costs and risks of such processes, lenders may shy away from using particular features if they 
believe there is a significant risk that disclosure recipients would feel that the data elements were 
unfair, irrelevant to assessments of creditworthiness, or violative of privacy norms, or that the ele-
ments would attract scrutiny regarding discriminatory practices or other regulatory concerns.161 For 
example, some lenders have reported that they have chosen not to consider data from cookies or 
the channel by which an application was received in their underwriting models due to these broader 
considerations, even where analysis showed such information was predictive of default risk. 

In light of these considerations, the debates about the specificity of adverse action disclosures 
discussed above can take on heightened policy significance in the context of data sources that are 
unfamiliar, unintuitive, or raise broader reputational concerns. Even where applicants themselves are 
supplying or authorizing access to particular data sources, they may not understand what aspects 
are being used by the lender, what errors might have a material effect on their assessment, or what 
changes in behavior might increase their chances of obtaining credit in the future. General educa-
tional materials may also be less available than in the context of traditional scoring and underwriting 
systems that rely on traditional credit bureau data. Thus, lenders’ decisions about how broadly or 
narrowly to describe particular features can have a significant effect on consumer understanding.

 For example, lenders that use educational attainment or professional information as a means of 
forecasting future income have historically faced a range of potential disclosure options, ranging from 
“educational attainment,” to “insufficient income,” to a hybrid indicating than the first was used to 
forecast the second. They may have considered a broad range of factors in deciding where to land 
on this spectrum, including the likelihood of triggering debates over the fairness of the factors,162 the 
potential utility to consumers of being more or less specific, and other considerations. The CFPB’s 2023 
Circular recently indicated that simply stating “insufficient projected income” or “income insufficient 
for amount of credit requested” would likely not satisfy the lender’s obligation to provide specific 
reasons for the adverse action, but did not provide an illustration of what would be adequate.163 Some 
stakeholders believe that updating the list of sample reason codes provided in ECOA’s implementing 
regulations or providing additional regulatory guidance about how to describe input features would 
be helpful to both lenders and borrowers in navigating these issues.

* * *
As reflected in this section, the debates about how to better effectuate the policy goals behind 

adverse action disclosures pre-date the adoption of machine learning underwriting models. However, 
the nature of machine learning models and current post hoc explainability tools do present certain 
technical challenges and increase the stakes of certain policy debates. While research on the reliability 
of explainability tools is encouraging, determining if, how, and when adverse action notices can be 
made more generally useful, and even actionable, for consumers requires substantially broader anal-
yses and mediation between multiple policy goals.
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6. FAIR LENDING
Although they do not fully encompass all of the notions of fairness discussed in Section 2.2, 

anti-discrimination requirements under the Equal Credit Opportunity Act and other federal laws pro-
vide important conceptual and procedural frameworks for assessing the fairness of inputs, processes, 
and outputs in credit underwriting. These requirements have shaped machine learning adoption for 
credit underwriting from the very beginning, requiring stakeholders to grapple with concerns about 
fairness impacts at a far earlier stage than in many other sectors.164 As ML adoption has accelerated 
and the broader data science community has focused increased attention on fairness issues, financial 
services stakeholders are debating the extent to which traditional concepts and practices should shift 
to account for ML models. 

Two sets of data science techniques are potentially relevant in this context. First, some lenders 
are using post hoc explainability tools to analyze which features play a particularly important role 
where ML models produce disparities in predicted default risks for different demographic groups. 
Historically, such analyses have been an important precursor to adjusting models to address fair 
lending concerns. Second, debiasing techniques and other general development tools are helping 
developers act more efficiently to produce a range of ML models to choose from in balancing fair-
ness, performance, and other concerns.165 

This section begins by summarizing policy and operational context relevant to fair lending com-
pliance for machine learning models,166 including an overview of debiasing techniques. The second 
part provides more detailed analyses of the following policy topics:

 »  Concerns that machine learning models may rely upon relationships that are proxies for race 
or other protected characteristics;

 » How to measure fairness for disparate impact purposes;

 »  Whether particular debiasing techniques are permissible in light of how they use data about 
protected characteristics; and

 » Clarifying expectations regarding searches for less discriminatory alternative models.

6.1 Regulatory and Operational Context
Congress adopted a series of laws in the 1960s and 1970s to prohibit discrimination and address 

various other types of fairness concerns in lending. The broadest of these is the Equal Credit Oppor-
tunity Act, which prohibits discrimination against “any applicant, with respect to any aspect” of 
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a consumer or commercial credit transaction “on the basis of” race, color, national origin, sex, and 
various other protected characteristics.167 The Fair Housing Act (FHA) prohibits discrimination in 
residential mortgage lending on many of the same bases, as well as familial status and disability.168 

These anti-discrimination laws have evolved to focus on two primary doctrines, disparate 
treatment and disparate impact.169 Disparate treatment generally prohibits consideration of race, 
gender, or other protected characteristics in underwriting and scoring models. Disparate impact, 
in contrast, prohibits the use of facially neutral practices that have a disproportionate adverse 
impact on protected classes, unless the practices serve legitimate business needs that cannot be 
reasonably met through less impactful means. 

This section summarizes (a) policy motivations; (b) current law and guidance; (c) traditional 
compliance practices and evolving debiasing techniques; and (d) key issues or risks in fair lending 
compliance when machine learning models estimate applicants’ likelihood of default.

6.1.1 Policy Motivations 
As discussed in Section 2.2, debates about fairness in financial services and other sectors often 

invoke a broad range of conceptions of fairness and inclusion, including such notions as equal treatment, 
equity in outcomes, and consistency in prediction accuracy, as well as broader concerns about increasing 
access by historically excluded groups. All of these concepts are relevant to federal fair lending law, with 
the first two playing a particularly important role in shaping legal analyses and compliance frameworks:

 »  Equal treatment: This conception of fairness requires that individuals be subject to the same 
criteria regardless of demographic characteristics, and in a more affirmative formulation that 
similarly situated individuals receive similar treatment.170 Through the disparate treatment doc-
trine, this principle is invoked in the credit context to prohibit different treatment because of 
applicants’ race/ethnicity, gender, or other protected characteristics. 

 »  Equity: This conception of fairness focuses on the extent to which individuals in different 
demographic groups receive equal outcomes even if they are not similarly situated in cer-
tain other respects.171 Its most direct use in fair lending compliance occurs at the first stage 
of disparate impact analysis, which evaluates whether facially neutral practices are creating 
disparities in approval rates and pricing among demographic groups without accounting for 
differences in financial situations. 

 »  Consistency of predictive accuracy: Prediction errors can create an additional source of 
fairness concerns, particularly where they are more likely to occur among particular demo-
graphic groups.172 In the credit context, an underwriting model that generates disproportionate 
numbers of false positive and false negative predictions for particular subgroups will result in 
more denials of creditworthy group members and approvals of group members who will in 
fact struggle to repay. In light of this, lenders may consider the accuracy of models in predicting 
default risk across protected classes as part of their disparate impact analyses. 

Different notions of fairness can complement and reinforce each other in some circumstances 
and create substantial tensions in others. For example, as discussed in Section 2.2, improving pre-
diction accuracy for consumers who are hard to evaluate using traditional methods and data could 
also advance equal treatment (consistency of outcomes based on actual default risk), equity (consis-
tency of outcomes among different demographic groups), and inclusion (participation by historically 
excluded groups). However, data science research has shown that as a matter of mathematics, it is 
often impossible to satisfy multiple quantitative definitions of fairness at the same time.173 
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BOX 6.1.1.1   SOURCES OF BIAS AND DEBIASING TECHNIQUES

Particularly in the fair lending context, stakehold-
ers often use terms such as “fairness,” “unfairness,” and 
“bias” interchangeably to discuss demographic disparities 
in model inputs and outputs that raise policy and legal 
concerns. However, statisticians and data scientists often 
use the term “bias” more broadly to include a wide range 
of variances between a model’s predictions and actual 
outcomes. Using this more technical definition of “bias,” 
the consistency of predictive accuracy is a bias issue, while 
notions of equity are best characterized as fairness issues. 

In the context of using machine learning models to 
assess credit risk, biases can originate from both the 
data used to train the model as well as choices made 
during model development. For example, 

 »  Bias can be introduced where training data 
are inaccurate, reflect past discriminatory 
practices, omit key variables, or lack 
representation for certain groups.

 »  Demographic disparities can also occur where 
features used by the model are correlated 
with protected or sensitive features.

 »  Choices in whether and how to optimize a 
model for larger populations or for different 
goals may affect its predictiveness with 
regard to particular populations.

“Model debiasing” refers to a range of methods to 
increase the accuracy and fairness of a model’s pre-
dictions, for instance by transforming the input data, 
building a debiasing function into model training, or 
transforming a model’s output. The machine learning 
debiasing methods discussed below involve building a 
debiasing function into model training. For additional 
detail about sources of bias and mitigation approaches, 
see our Market & Data Science report.174

In credit underwriting, there are particular concerns that “fairness through unawareness” under 
disparate treatment law is replicating or even exacerbating decades of past discrimination because 
underwriting relies so heavily on data sources that reflect deep financial disparities produced by 
decades of discrimination across a wide variety of economic sectors, lack of geographic access to 
banks, and targeting by high-cost lenders.175 In the face of such “traumatized data,” stakeholders 
are debating the efficacy of existing doctrines and compliance approaches for achieving broader 
fair lending goals, including the potential advantages of using protected class data to support more 
aggressive debiasing activities or to include it directly in credit underwriting models to account for 
underlying differences in the size and financial situations of different populations.176 While these 
debates are not unique to machine learning models, those models’ ability to detect more subtle 
relationships in underlying data and the new techniques being developed to manage such models 
are raising both hopes and fears about our ability to achieve broader fairness goals.

6.1.2 Existing Law and Guidance
Unlike model risk management, fair lending requirements apply broadly to both bank and non-

bank lenders, although regulatory supervision levels can vary in practice.177 The regulatory frameworks 
are similar to those developed under federal laws governing employment. This section summarizes 
the requirements relevant to the context of machine learning underwriting models. 

6.1.2.1 Disparate Treatment
The disparate treatment doctrine focuses on whether creditors have treated applicants differently 

based on protected characteristics, and with limited exceptions prohibits consideration of race, gen-
der, or other protected characteristics in underwriting and scoring models.178 It is reinforced by other 
federal law that generally prohibits lenders from collecting data about protected characteristics for 
fear that it will be used for credit decisioning.179

While disparate treatment focuses generally on intentional discrimination, there is no require-
ment to show animus or a conscious intent to discriminate against a protected class, only that the 
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act of differential treatment was intentional. For example, except for narrowly prescribed special 
purpose credit programs,180 disparate treatment would bar a lender from accepting loan applications 
only from women without regard to whether the lender has an animus towards men. The doctrine 
has also been applied to situations in which lenders incorporate factors that are closely correlated 
to a protected characteristic as a pretext for intentional discrimination. Examples of features that 
might raise statistical proxy risks are census block identifiers and certain magazine subscriptions or 
occupational classifications, among other features. 

6.1.2.2 Disparate Impact
Disparate impact prohibits lenders from using facially neutral practices that have a disproportion-

ately negative effect on protected groups, unless those practices meet a legitimate business need that 
cannot reasonably be achieved as well through less discriminatory alternatives.181 The disparate impact 
doctrine is sometimes described as an “effects test” because it focuses on the effects of a process rather 
than its intent. Examples of underwriting features that might trigger disparate impact scrutiny include 
income and length of credit history, since they tend to be correlated with demographic characteristics 
such as race/ethnicity and age, respectively, and thus might create disparities in default predictions 
among different demographic groups that lead to disparities in loan approvals or pricing.

However, analyzing outcomes is only the first stage of a disparate impact analysis, which then 
shifts to assessing whether the practice furthers a legitimate business need (such as predicting 
default risk) and whether there are alternative criteria or processes that would reasonably achieve 
the same goal while producing fewer disparities.182 In a courtroom setting, the burden is on the 
challenger to show the existence of less discriminatory alternatives, although lenders may perform 
all three analyses as part of their compliance programs.183 

Federal laws and regulatory guidance do not specify thresholds for what level of disparity in 
outcomes requires an inquiry into legitimate business needs or searches for less discriminatory alter-
natives, although in the employment context the Equal Employment Opportunity Commission has 
used 80% as a “rule of thumb” at times.184 Similarly, there are no defined qualitative or quantitative 
standards for determining what models constitute “less discriminatory alternatives” (LDAs). At 2023 
conferences, CFPB officials have described “rigorous searches” for LDAs as “a critical component of 
fair lending compliance management” and expressed concern that lenders may tend to shortchange 
this aspect of compliance. However, the agency has not issued formal guidance on LDA topics.185 

6.1.3 Operational Context
Over time, lenders have developed a range of operational processes both to manage potential 

biases in general and to meet fair lending compliance expectations specifically. Historical methods 
have tended to rely heavily on analyzing which input features are most closely correlated with 
protected class as a first step to determining whether and what types of back-end adjustments to 
the model may be warranted. However, new methods that have evolved in the machine learning 
context are focusing on earlier and more rapid iteration strategies to identify alternative models 
with lower levels of disparities. This section summarizes both traditional compliance approaches 
and the new debiasing techniques.

6.1.3.1 Access to Protected Class Information
Although protected class information is critical to assessing and managing fair lending risks, federal 

laws generally prohibit collection of information about protected characteristics except for residential 
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mortgages and small business loans.186 For categories of loans for which demographic data are not avail-
able, compliance staff and agency examiners typically rely on a methodology called Bayesian Improved 
Surname Geocoding (“BISG”) to impute race and ethnicity probabilities and similar techniques for gender 
probabilities based primarily on names, addresses, and birth years where available.187 Some stakeholders 
have noted that the methodology is less reliable for some subpopulations than others and may become 
less effective over time as residential, marriage, and name patterns shift.188

In light of the restrictions on data collection and broader prohibitions on disparate treatment, 
firms typically designate separate compliance teams to be responsible for fair lending oversight 
and restrict access to information about protected characteristics to those teams as a matter of 
policy. This approach provides structural safeguards against misuse of this sensitive information, 
yet complete separation is not always practicable (particularly for smaller firms) and has potential 
implications for the efficiency and efficacy of modeling and debiasing processes.189 

6.1.3.2 Manual Feature Reviews
Firms typically conduct manual feature reviews during the initial model development process to 

ensure that protected class characteristics have not been included and to exclude features that do not 
have a clear nexus with creditworthiness or that based on the firm’s general knowledge and experience 
are likely to drive unjustifiable disparities in the model’s decisions.190 By excluding certain variables up 
front, model developers can reduce the number of iterations required to develop a model that minimizes 
disparate treatment and disparate impact risk. For this reason, many lenders report that features in their 
logistic regression underwriting models have been relatively stable over time, as developers draw on 
knowledge gained in past rounds of testing and validation when selecting features for updated models.

6.1.3.3 Statistical Testing
Statistical testing is an important component of fair lending risk management for both disparate 

treatment and disparate impact. Regardless of the type of underwriting model being used, fair lend-
ing testing often begins once the model development team has submitted the model for review and 
validation, and is conducted by a separate compliance team with access to actual or imputed data 
about protected classes. 

Disparate Treatment
Statistical testing is used in the disparate treatment context to evaluate whether input features 

are functioning as impermissible proxies, although federal regulators have not specified a specific 
analytical test or threshold for what level of correlation is considered impermissible.

The most commonly used analysis calculates the level of correlation for each input feature with 
both protected class on one side and model performance on the other.191 This is relatively easy to 
calculate for any type of underwriting model, but some stakeholders suggest that is too simplistic, 
in that it would be hard to argue that a variable with modest correlations to both protected class 
and model performance is a proxy simply because the protected class correlation is slightly higher.

 Some other firms deploy alternative tests particularly in the machine learning context that 
evaluate the impact of variables that are highly correlated with protected characteristics within 
individual protected class groups, either by training separate models on control and test popula-
tions or by looking at performance contributions within specific protected classes. Proxy risk might 
be heightened if a variable that is highly correlated with a protected class also does not contribute 
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to performance within that protected class, despite contributions to performance in underwriting 
other groups or across the broader model as a whole.192 

Disparate Impact
Disparate impact compliance also relies heavily on statistical analyses to determine the extent to 

which particular input features are producing disproportionate adverse impacts that require potential 
mitigation measures.193 Much as in the disparate treatment context, regulatory guidance does not specify 
the methodology to be used or thresholds for what level of disparities trigger follow up activity.

In the absence of a clear directive, consumer lenders often use the adverse impact ratio (“AIR”) 
to test for the presence of statistical disparities in decisions to approve or deny loan applications 
and standardized mean differences (“SMD”) to test for pricing disparities.194 For instance, AIR is 
often used to assess the extent to which differences in a model’s default predictions across different 
protected class groups (e.g., men and women or Black and White applicants), will cause disparities 
in approval rates at given risk thresholds. Specifically, AIR is calculated as the ratio of the approval 
rate for a protected class group to the approval rate for a control group (often White applicants or 
White male applicants). For example, if 30% of Black applicants are approved for a loan and 40% 
of non-Hispanic White applicants are approved for a loan, then AIR is equal to 30% / 40%, or 0.75.

Where a lender selects AIR to evaluate potential new underwriting models, the next step is to eval-
uate whether each individual consumer in the testing population would have been approved or denied 
under each model and approval threshold being considered,195 and then use actual or imputed protected 
class characteristics to calculate AIRs for each protected class for each alternative under consideration. 
Lenders may also generate accuracy statistics for the model as a whole and for each demographic group 
to assess whether prediction errors are disproportionately concentrated among particular populations. 

Some lenders also apply a second cutoff to determine whether adverse impacts are sufficiently 
large to warrant a search for less discriminatory alternatives or other follow ups. These practical sig-
nificance standards help lenders focus resources on disparities that pose the greatest regulatory and 
reputational risk.196 However, as discussed in Section 6.1.2, case law and regulatory guidance do not 
provide precise mathematical thresholds for determining the level of problematic disparities, as the 
80% threshold that is sometimes used in the employment context has not been formally recognized 
in financial services.197 As a result, firms establish internal thresholds based on a variety of factors 
related to their business and operations, such as customer base, business strategy, prior experience 
with comparable models, and prior regulatory interactions.

6.1.3.4 Techniques for Debiasing Underwriting Models
Where statistical tests raise substantial disparate impact concerns, firms’ mitigation processes 

typically focus on (1) identifying potential changes to the model’s specifications or alternative models 
that could potentially reduce correlations with protected characteristics and disparities in outcomes 
across protected class groups; and (2) testing whether those alternatives do in fact reduce fair lend-
ing risk while achieving substantially the same business outcome as the original model.198 The first 
step generally does not require access to protected class characteristics, although some firms may 
direct their compliance staffs to use protected class information to conduct additional manual feature 
reviews to remove certain features or to identify key features on which to focus and others may opt 
to expose algorithms used for debiasing models directly to protected class information.199 In contrast, 
the second step always requires protected class information in order to test the revised model(s). 
Since firms typically limit access to protected class information to fair lending teams, searches for less 
discriminatory alternative models often occur relatively late in the process of model development.200 
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The adoption of machine learning models has expanded available methodologies for conducting 
searches for less discriminatory alternatives, although many of these new methods raise important 
policy questions. This section provides an overview of both traditional and machine learning debi-
asing methods as a background to the subsequent policy analysis in Section 6.2.

6.1.3.4.1 Traditional Debiasing Methods
In relatively simple logistic regression models, lenders rely on features’ coefficients to indicate the 

importance of specific data inputs on a particular credit decision and in driving aggregate disparities 
across protected class groups. To determine whether a particular input feature was driving disparities 
in the model’s predictions, developers could simply omit the feature and observe how predictions and 
disparities change when the feature was omitted. This method is colloquially known as “drop one out.” 
The feature’s contribution to a difference in predicted default between applicants in various groups—for 
example, the difference between Hispanic and non-Hispanic White applicants—could be measured by 
evaluating both populations with and without the feature included, applying an approve/deny threshold, 
and computing the difference in approval rates and accuracy levels between populations. 

Where a particular model is associated with a disparity of sufficient size to trigger further investi-
gation under the lender’s policies, lenders may evaluate the tradeoffs of omitting individual features, 
adjusting them in various ways to reduce disparities in the model, and substituting other features or 
data. In traditional models with relatively few features, omitting features entirely may help to reduce 
disparities, but often comes with a significant cost in the model’s predictive performance. Lenders’ 
willingness to adopt alternative models vary in such circumstances based on a variety of factors, 
including general risk tolerance, the purposes for which the model will be used, the confidence in the 
model’s accuracy metrics, and concerns about the distribution of increased defaults.

To mitigate the loss of performance that comes with “dropping one out,” lenders can search for 
ways to adjust the weights of individual features or transform individual features to reduce the 
disparities in the model’s predictions without incurring the full performance cost of omitting the 
feature altogether. For example, considering income or length of credit history up to a certain cap or 
using debt-to-income ratios instead of income by itself may help to preserve much of the predictive 
value while reducing disparities. 

Another option for mitigating performance deterioration from “drop one out” strategies is to add 
data to enrich the context in which the model is making predictions. For instance, accounting for 
evidence of the fact that some applicants may not have ready access to banks or other amenities 
might help to clarify predictive signals and reduce disparities created by inputs concerning their 
prior borrowing or financial history. However, geographic information at times can create risks of 
proxy discrimination, as discussed in Section 6.1.2. Accordingly, each decision about whether to add 
data and if so what type of data to use needs to balance potential benefits and risks. 

6.1.3.4.2 Techniques for Debiasing ML Models
Adoption of machine learning underwriting models has opened the door to using a variety of 

more sophisticated debiasing methods that rely on algorithmic optimization rather than manual 
feature or model modifications to reduce disparities in credit decisions. The two most common 
examples of these methods are joint optimization and adversarial debiasing.201 Unlike the tradi-
tional fair lending compliance strategies described above, these machine learning methods typically 
work on a model holistically—producing new model specifications or “drafts” of the model, rather 
than trying to edit individual features in the model and assess the marginal effects of each change. 
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These machine learning debiasing approaches harness the ability of the learning algorithms to iden-
tify highly accurate models and to generate iterative sets of model specifications relatively quickly 
and efficiently.

These methods typically require use of protected class information to evaluate the fairness of each 
draft or iteration of an underwriting model. While traditional methods also use protected class infor-
mation to evaluate model disparities and the effect of mitigation attempts, iterative processes in the 
machine learning context are faster and more dynamic. The debiasing techniques do not use protected 
class information to make individual credit decisions, and the use of protected class information occurs 
during the training process when working to evaluate and mitigate disparities in the model. However, 
some stakeholders view this indirect structure as still raising substantial disparate treatment risk. 

Joint Optimization

In a joint optimization approach the developer instructs the learning algorithm to simultane-
ously optimize two objectives as it builds successive iterations of the model, rather than simply 
identifying the model with the highest predictive accuracy. When used to debias machine learning 
underwriting models, the second objective is typically a fairness metric; for example, the learning 
algorithm could try to improve AIR while minimizing accuracy losses. A relative weight is assigned 
to each objective in the model’s blended objective function, which dictates the trade-off the model 
developer is willing to accept when one objective must be sacrificed for another.

The diagram below shows the process of joint optimization:

JOINT OPTIMIZATION PROCESS
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In the first step of joint optimization, the user selects a learning algorithm and identifies its 
objectives, among other things. In model training, the algorithm will first find a preliminary model 
based on the training data. That preliminary model specification—a first draft of the underwrit-
ing model—will then be assessed for fairness, among other objectives. This assessment provides 
a direction in which the algorithm can proceed to find a model that can better meet the blended 
objective. Real or imputed protected class data is required by the learning algorithm to run a statis-
tical assessment of disparities.

As the learning algorithm iterates additional drafts of the model (stage 3 on the diagram), each 
draft improves the model’s accuracy or fairness to better satisfy the blended objective. This process 
repeats until gains in fairness necessitate unacceptable losses to accuracy, and vice versa.

Adversarial Debiasing

Adversarial debiasing is a method in which a second model—an “adversary”—is used to esti-
mate the distribution of default predictions for various protected class groups for each iteration or 
draft of the underwriting model being developed.202 The adversary is designed to predict protected 
class status, not default risk, based on the underwriting model’s default predictions, and its learn-
ing algorithm has access to protected class information. At the outset of the process, the adversary 
makes a random guess about the protected class status associated with each score. The adver-
sary’s learning algorithm then assesses the accuracy of the adversary’s prediction of the protected 
class characteristics of the applicant associated with each score. The underwriting model’s learning 
algorithm takes this feedback and tries to minimize the adversary’s accuracy while improving the 
accuracy of default predictions. The underwriting model learns to produce default predictions that 
are less correlated with protected class, and, as a result, the adversary becomes less accurate. The 
adversary does not make individual credit decisions, nor does its use typically extend beyond the 
portion of time in which users are searching for less discriminatory alternatives. 

The diagram below shows the process of adversarial debiasing:

ADVERSIAL DEBIASING PROCESS
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ADVERSIAL DEBIASING PROCESS

As in joint optimization, the user selects a learning algorithm that will develop an underwrit-
ing model and defines its objective as predicting the risk of default (step 1a in the graphic above). 
Unlike joint optimization, where the fairness component is calculated using protected class labels 
directly, adversarial debiasing takes a different approach. In the next step of preparation (step 1b in 
the diagram), the user sets up a second model to be trained—the adversary. This model is designed 
to estimate the protected class status of the borrower using the predictions of the underwriting 
model as inputs. The accuracy of the adversary is generally evaluated by comparing its outputs 
to protected class information. After initial training, the learning algorithm for the underwriting 
model is also given an additional objective of minimizing unfairness by minimizing the accuracy of 
the adversarial model. The underwriting model’s learning algorithm aims to minimize its prediction 
error on default risks while trying to produce scores that prevent the adversary from accurately pre-
dicting the sensitive features. Thus, while joint optimization directly engages with fairness metrics, 
adversarial debiasing works by diminishing the ability of an adversary to infer sensitive features. 
This type of conditional objective is described as a “minimax” outcome.

The developer then assigns a fairness weight for the underwriting model that dictates the bal-
ance between the model’s primary goal (predicting defaults) and secondary goal (reducing bias by 
minimizing the accuracy of the adversary model), and then uses the learning algorithms to train 
successive version of the underwriting model and the adversary as reflected in steps 2a and 2b. 
In each iteration, the underwriting model’s learning algorithm is provided feedback based on the 
adversary’s success rate. If the adversary can accurately assign protected class characteristics using 
the model’s predictions, it indicates potential unfairness. The underwriting model’s learning algo-
rithm responds by adjusting its parameters to produce predictions that are harder for the adversary 
to use for guessing protected features. The adversary similarly trained on each iteration of the 
underwriting model’s predictions.
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As iterations continue, both the underwriting model and the adversary adjust. The underwrit-
ing model never directly receives information about protected status; instead, this information 
influences the model indirectly through its objective of minimizing the adversary’s accuracy. If 
the adversary can effectively predict protected characteristics, the underwriting model will pivot, 
potentially placing more importance on features that are less tied to protected class or even using 
negative correlations to mislead the adversary. The end goal is to reach a model that balances 
predictive accuracy with fairness.

This process is often repeated using different fairness weights, resulting in additional model can-
didates. Each fairness weight represents a different balance between predictive accuracy and fairness. 
Once a firm has completed iterations of this process for the desired range of fairness weights, the set 
of model candidates can then be evaluated to determine which option will become the final model.

6.1.4 Key Issues and Risks
The transition to more widespread use of machine learning underwriting models and availabil-

ity of new debiasing approaches have focused attention on certain key issues and risks related 
to fair lending compliance. Many of these issues and risks are not unique to machine learning 
underwriting models, but many are more prominent in debates about the responsible use of those 
models. Those include:

 »  Amplifying Effects of Past Discrimination: Practically all underwriting models rely on 
past lending data to predict future lending behavior and are therefore prone to transmit-
ting biases embedded in historical credit data due to past discrimination in various forms.203 
However, stakeholders have expressed concern that the powerful machine learning algo-
rithms that detect patterns related to default risk in that data may build models that 
increase those biases, just as they are able to increase model accuracy. 

 »  Reliance on Proxies: Use of machine learning underwriting models produces heightened 
concern about whether learning algorithms can and do infer protected class characteristics 
from training data that does not include such information.204 If an algorithm can infer that 
information, the resulting underwriting model may be using protected class information 
as the algorithm identifies relationships to be used in the underwriting model. Similarly, 
machine learning models may be relying on features and relationships among features that 
are statistical proxies for protected class characteristics and/or return predictions of default 
risk with large disparities across protected class groups.

 »  Model Transparency: Traditional fair lending practice has relied heavily on identifying, 
analyzing, and manipulating individual input features to mitigate fair lending risks. Complex 
models that may involve hundreds of input features and thousands of interactions between 
features in the model call into question whether and how to apply traditional methods 
for identifying, assessing, and reducing disparities. It may not be clear to compliance staff 
whether a machine learning model is relying on a proxy or has reverse engineered protected 
class status, and simply omitting or transforming initial inputs may not have the same 
effect as in a traditional regression model. 

 »  Regulatory and Business Uncertainty: Lenders have a strong incentive to maintain the 
status quo in light of regulatory uncertainty and risks raised by fair lending enforcement 
actions. New methods to find less discriminatory alternatives that make significant gains 
in fairness and accuracy relative to traditional approaches may nonetheless be viewed by 
institutions as having unacceptable regulatory risk, for instance due to uncertainty with 
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regard to how they use protected class information. Uncertainty about how the methods 
produce their fairness gains and whether the alternative models will hold up in changing 
data conditions may also make lenders cautious about adoption. 

6.2 Key Policy Issues
As the adoption of machine learning models accelerates, stakeholders are debating both the 

utility of traditional and new debiasing approaches and the potential value of updating regulatory 
guidance on fair lending compliance.205 This section describes key debates, focusing first on disparate 
treatment and then on disparate impact. The disparate impact issues include measuring fairness; 
use of protected class information and debiasing techniques; and expectations for identifying less 
discriminatory alternatives, including both when to search for them and how to evaluate alternative 
models.

6.2.1 Disparate Treatment
As discussed in Section 6.1.3, the most commonly used test for evaluating whether input fea-

tures are impermissible proxies calculates the level of correlation for each input feature with both 
protected class on one side and model performance on the other, but some firms go further by 
assessing the impact of variables on each protected class in isolation. 

In the context of machine learning models, proxy analysis is complicated both by the poten-
tial for nonlinear and non-monotonic relationships and by complex interactions between features 
within the model. This challenge is prompting some stakeholders to turn to interpretable models, 
using architecture constraints to limit the creation of latent features and restrict the operation of 
such features if they have different distributions for different protected classes.206 Others may start 
disparate treatment analyses for more complex models by building single-variable machine learning 
models or by using surrogate models to evaluate which sets of input features are most predictive 
of protected class characteristics,207 and then training separate underwriting models for different 
subgroups to test the performance effects of excluding the variables of concern.208

Yet while these approaches and explainability techniques more generally can be used to evaluate 
the importance of individual input features to model operations, the most commonly used techniques 
cannot directly and precisely map feature interactions within more complex ML models.209 Thus, sim-
ilar to the model risk management and adverse action notice contexts, stakeholders are mulling the 
importance of pinpointing specific feature interactions to assess whether those interactions might 
be reverse engineering protected class status or might be considered statistical proxies for protected 
characteristics. 

Beyond the technical debates about the application of current explainability techniques, this 
issue raises important conceptual issues. A learning algorithm that has been directed to find the 
most predictive underwriting model it can is not acting with intent to circumvent prohibitions on 
the use of protected class characteristics or relying on features that are a pretext for an applicant’s 
race or gender. The model’s learning algorithm is not seeking to identify protected characteristics or 
to find relationships that favor or punish members of protected classes. Moreover, recent research 
has highlighted some of the limitations of traditional approaches that rely on excluding input vari-
ables that are closely correlated with protected characteristics to reduce disparities produced by 
machine learning models, while suggesting that more automated approaches to debiasing models 
hold more promise (See Box 6.2.1.1 and Section 6.2.2.2). 
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BOX 6.2.1.1   LIMITATIONS ON THE EFFECTIVENESS OF EXCLUDING INPUT FEATURES

In addition to FinRegLab’s disparate impact research 
as discussed in Section 6.2.2, empirical research by 
Talia Gillis of Columbia Law School has explored the 
limitations of excluding protected class and inputs 
that are statistical proxies for protected characteris-
tics as a means of reducing disparities in underwriting 
models.210 Using the Boston Federal Reserve Bank’s 
Home Mortgage Disclosure Act (HMDA) dataset, Gillis 
constructed two models to predict default risk, one 
of which included all of the HMDA data elements 
except race and another that excluded both race and 
the ten features most strongly correlated with race.211 
Excluding the additional variables had only a modest 
effect on disparities in predicted default risk between 
White and non-White borrowers.212 Further restricting 
the list of inputs produced smaller disparities but also 
reduced accuracy.213

Gillis also constructed models to predict whether 
borrowers were Black using only the HMDA data ele-
ments and only a form of zip code information, which 

is typically excluded from underwriting models due to 
concern that it operates as an impermissible proxy for 
race and ethnicity.214 The model trained on traditional 
underwriting inputs was more accurate in predicting 
protected class than zip code alone, emphasizing the 
extent to which intuitive notions of which variables 
may be correlated with protected class may be incom-
plete.215 Similarly, the HMDA data could be used to 
construct models to predict age and marital status.216

The article concludes that while intuitively appeal-
ing, practical challenges to defining and detecting 
proxies are endemic. Rather than focusing on fairness 
strategies that reduce predictive accuracy—which 
may also have disproportionately negative impacts 
on protected classes—the analysis suggests that fair 
lending assessments in the machine learning context 
should shift from managing individual inputs toward 
expanding analyses of outcomes.217

These considerations raise important questions about whether the disparate impact framework 
is both more appropriate conceptually and more effective practically for evaluating and mitigating 
potential concerns about ML models’ fairness. As discussed further below, the availability of a more 
effective debiasing toolkit for managing disparate impact risks may provide a compelling counter-
weight to concerns about potential proxies in feature interactions constructed within the model. 
These considerations further underscore the importance of additional research into the effective-
ness and limitations of machine learning debiasing techniques and of clarifying expectations around 
searches for less discriminatory alternative models.

6.2.2 Disparate Impact
As stakeholders deepen their understanding of various debiasing tools and implementation 

choices, public policy questions regarding disparate impact compliance have taken on additional 
urgency in light of the adoption of ML models. Additional regulatory guidance on these issues could 
help to determine the extent to which ML models—particularly when combined with more inclu-
sive data sources—meaningfully increase access to credit.

6.2.2.1 Measuring Fairness
As discussed in Section 6.1.3, lenders who are vetting models for potential disparate impact risk 

typically use AIR to assess disparities in decisions to approve or deny credit and SMD in the con-
text of pricing disparities.218 Both metrics compare disparities in the default predictions between 
demographic groups, but do not account for differences in the applicants’ financial circumstances 
or the general accuracy of the model’s predictions with regard to different demographic groups. 
As a result, it is technically possible for a lender to achieve a perfect AIR score of 1 if it is willing to 
approve loans to applicants who are not likely to be able to repay them, even though such actions 
would raise serious concerns about both predatory lending and the lender’s safety and soundness. 
In light of these limitations, some stakeholders have suggested that using the traditional metrics in 
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isolation creates tension with other regulatory regimes.219 In practice some lenders use additional 
performance metrics to place AIR/SMD in context.

However, finding replacement measurements of fairness that can serve ECOA’s various legal 
requirements is challenging. While the broader data science community has engaged in a robust 
dialogue over the last decade regarding how best to measure and achieve model fairness, some 
options are precluded in the lending context due to data limitations and the constraints imposed by 
the disparate treatment doctrine.220 Stakeholders report substantial variance in the extent to which 
alternative fairness metrics such as predictive accuracy by group are being used today, with some 
lenders only deploying it in limited or exploratory contexts if at all and others treating it as a core 
element of compliance reviews.221 

Within the credit ecosystem, stakeholders appear most interested in the potential adoption of 
fairness metrics that identify whether a model provides default predictions with the same level of 
accuracy across different populations. For instance, one option would be to apply the same general 
performance metrics that are typically used in model development processes222 across different 
populations to assess whether the model has the same predictive accuracy for different demo-
graphic groups and for subgroups with similar risk profiles.223 While some lenders may perform 
such analyses as part of their internal compliance programs, proponents of making them a specific 
regulatory focus argue that such measures are more appropriate and realistic because they hold 
lenders accountable for disparities in predictive accuracy rather than outcomes that are shaped by 
entrenched societal inequality.224

6.2.2.2 Use of Protected Class Information and Debiasing Techniques
A second threshold question concerns whether the use of protected class information and newer 

debiasing techniques is permissible under the disparate treatment doctrine to the extent that the 
techniques use data about protected class membership in different ways than traditional mitigation 
approaches.225 

As described in Section 6.1.3, techniques such as joint optimization and adversarial debiasing do 
not use protected class data to make individual credit decisions, although they do use it during the 
training process for assessing model prediction disparities and making a series of rapid adjustments 
and iterations to search for alternative models. In addition to these techniques, many vendors pro-
vide general platforms or other services that facilitate the rapid iteration of models through assigning 
weights, changing model constraints, and other adjustments. These various automated processes are 
more dynamic than traditional methods, and in some but not all cases involve exposing the learning 
algorithm directly to protected class information so that it can determine which combinations of input 
features maximize predictiveness and minimize disparities. Concerns about violating prohibitions on 
disparate treatment have slowed the initial adoption of joint optimization and adversarial debiasing 
in the credit context relative to their use in some other sectors.

Our research suggests that new automated tools can be quite powerful in using machine learning 
techniques to develop models to reduce disparities. Where we tested approaches that relied on tra-
ditional mitigation strategies focusing on a narrow subset of features, model performance declined 
with little to no improvement in fairness. But more automated approaches—which include a range 
of strategies including but not limited to joint optimization and adversarial debiasing—were able 
to produce a menu of options that provided larger fairness benefits and smaller accuracy tradeoffs. 
While we did not test the full spectrum of approaches or fully evaluate each individual alternative 
identified, our findings illustrate the more powerful toolkit that combining machine learning with 
post hoc tools can provide in searching efficiently for fairer models. 
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The graph below illustrates some of the results from different debiasing methods. Accuracy is 
represented by the area under the curve (AUC), a commonly used measure of predictiveness, while 
fairness is represented by the adverse impact ratio (AIR), a measure of the disparities in the selection 
rate between minority and non-minority consumers. As reflected in the graphic, the traditional debi-
asing methods (blue X and black diamond) were significantly less predictive than the baseline model 
(orange dot), but did not significantly improve fairness. The automated approaches (solid line, dashed 
line, black Xes) substantially improved fairness, with varying changes in predictive accuracy.226

FAIRNESS-PERFORMANCE CHARACTERISTICS OF LESS DISCRIMINATORY MODELS IDENTIFIED BY THE MODEL DIAGNOSTIC TOOLS  
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minority consumers.

It is not surprising that modifying or dropping a handful of features may have relatively marginal 
effects on model disparities where models involve larger numbers of features. As discussed in Sec-
tion 6.2.1, academic research also suggests that simply dropping features that are closely correlated 
with demographics may not be an effective strategy for reducing disparities in machine learning 
models due to the presence of correlated features.227 Some stakeholders report they are assessing 
whether evaluating groups of correlated features rather than individual features can strengthen the 
effectiveness of traditional strategies, and others are focusing on using architecture constraints to 
limit and manage the use of latent features that raise potential disparate impact concerns. However, 
these factors have also increased interest in automated debiasing tools as potentially more effective 
and efficient strategies for managing fairness concerns in the ML context.

At the same time, skeptics have questioned whether some alternatives generated by debiasing 
techniques may be achieving greater fairness by altering the weights of features in ways that could 
be difficult to justify under model risk management guidance or that may not hold up when there are 



Explainability & Fairness in Machine Learning for Credit Underwriting   Policy Analysis
62

Section 6: Fair Lending

shifts in economic conditions or other data distributions. Research into specific debiasing approaches 
could thus be helpful to illuminate the most promising methodologies and specific implementation 
choices that lenders face when deploying these techniques.228 It could also be helpful to probe the 
alternative models generated by such tools, for instance to understand the extent to which any 
declines in accuracy tend to be concentrated among different subgroups, how well the models per-
form in general risk management validation processes, and the extent to which fairness improvements 
remain robust in changing data conditions.229 Thus, while the initial results are promising, additional 
public research could give lenders and regulators more confidence in selecting both specific debiasing 
approaches and from among the range of models that they generate.

Regulatory guidance could also be helpful. In recent years, lenders who are adopting machine 
learning models appear to have become increasingly comfortable with authorizing their fair lending 
compliance teams to deploy debiasing techniques during searches for less discriminatory alterna-
tives, while prohibiting their use by business units in earlier development stages. In practice, this 
means machine learning debiasing techniques are used as part of reviewing a new underwriting 
model proposed for use, monitoring an underwriting model already in use, and assessing updates 
to an underwriting model in use or changes in factors that affect disparities in credit decisions, such 
as credit score cutoffs. This bifurcation is consistent with historical fair lending compliance practice 
and guards against the risk of misuse of protected class information by initial development teams. 
However, depending on how lenders sequence their overall model development process, bifurcation 
may lengthen overall timelines for validation and deployment. 

Proponents of using such techniques during the initial development process point out that it can 
present a stronger fair lending baseline at the outset of compliance review processes and may be 
particularly advantageous for smaller firms that may struggle to attract and maintain equal levels 
of technical expertise in both their business and fair lending units. For firms that conduct conceptual 
soundness and general model validation before fair lending review, earlier deployment of the tech-
niques could increase the chances that the lender does not have to repeat such processes a second 
time. However, enabling model development teams to do this work earlier in the process would 
emphasize the importance of establishing internal controls and oversight mechanisms to define 
and police what uses are permissible. Some stakeholders also suggest that having independent 
general validation processes as part of model risk management could be an important governance 
mechanism particularly at a time when stakeholders are still learning about the potential utility and 
limitations of more automated techniques for identifying less discriminatory alternatives.

Moreover, absent further regulatory guidance, some lenders remain reluctant to authorize the use 
of the techniques even by traditional compliance teams or vendors, separate from the initial model 
development process. Particularly in the absence of greater clarity about when they are obligated to 
search for less discriminatory alternative models in the first instance, they are reluctant to take on 
the technical and compliance questions involved in managing both machine learning models and new 
approaches to LDA discovery. 

6.2.2.3 Identifying Less Discriminatory Alternatives
The transition to machine learning underwriting models has also highlighted policy questions 

about regulators’ expectations for lenders in searching for and identifying alternative models that 
reasonably meet the lender’s legitimate business need to predict default risk while producing less 
disparity in predicted outcomes among protected groups. Many lenders today do not invest sub-
stantial resources in searching for LDAs, particularly where they are relying on traditional techniques 
and data sources and not making significant changes to their existing underwriting systems.230
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As discussed further below, questions about the broader search for less discriminatory alternative 
models include:

 »  Do regulators expect lenders always to search for LDAs during the model development pro-
cess, or only in certain circumstances? What range of options should be considered during 
a search process?

 »  To the extent that alternative models involve some reduction in predictive accuracy, is there 
a threshold past which such models should not be considered LDAs because the performance 
losses are too large?

 »  If an alternative model reduces disparities for one group but increases them for another or 
hinges upon relationships that raise other policy or regulatory concerns, should it be consid-
ered an LDA?

As noted in Section 6.1.2, CFPB officials speaking at conferences in 2023 described “rigorous 
searches for less discriminatory alternatives” as “a critical component of fair lending compliance 
management” and expressed concern that lenders may tend to shortchange this aspect of compli-
ance.231 However, the agency has not issued formal guidance on LDA topics to date despite urging 
by advocates and some industry stakeholders.232

When Searches for Less Discriminatory Models Are Required
As described in Section 6.1.3, lenders often rely on two tests—statistical significance and practi-

cal significance—to determine whether a disparity warrants further investigation and searching for 
LDAs. Statistical significance tests whether a disparity for protected class groups can be featured to 
operation of a facially neutral practice or policy. Practical significance helps lenders assess whether 
a particular disparity puts them at risk to be found to have committed a legal violation of the ECOA. 

Lenders which have adopted practical significance standards will generally not conduct searches 
for less discriminatory alternative models unless an adverse impact is beyond the thresholds that 
they have adopted for both statistical and practical significance.233 Lenders report that practical sig-
nificance standards allow them to focus investigation resources efficiently on disparities most likely 
to lead to legal violations.234 However, to date, neither court decisions nor regulatory guidance have 
recognized use of practical significance standards to determine when searches for alternative model 
specifications are required in the context of credit underwriting.235 In the absence of regulatory guid-
ance providing thresholds and in light of varied industry practice, one recent monitorship report using 
the following as practical significance cutoffs: AIR less than 0.90 (where a lower AIR means greater 
disparities) makes an approval/denial disparity practically significantly and an SMD greater than 0.30 
(where a higher SMD means greater disparities) makes an APR disparity practically significant.236

Defining Which Models Reasonably Meet Legitimate Business Needs
Where machine learning debiasing methods are used, lenders now have the ability to generate a 

spectrum of model specifications that reduce protected class disparities in the model’s predictions. Where 
options with smaller disparities come with reductions in model accuracy, lenders are faced with a difficult 
choice: what constitutes a valid less discriminatory model specification? In this context, understanding 
better when an alternative model has to be adopted under the disparate impact requirements may help 
lenders define the scope and intensity of their efforts to identify alternative models. 

In general, the ECOA seeks “to promote the availability of credit to all creditworthy applicants” 
without regard to enumerated protected characteristics such as race, religion, national origin, sex, 
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marital status, or age.237 Lenders may be at risk for a violation where they failed to adopt an “alter-
native [model] that is approximately equally effective is available [and] that would cause less severe 
adverse impact.”238 However, regulators have not generally specified how lenders can or should spe-
cifically assess when a proposed alternative model has sufficiently close predictive accuracy to the 
original model to require adoption. 

Many stakeholders accept the notion that lenders are not generally required to accept a less 
discriminatory model that meaningfully reduces the predictive accuracy of their underwriting 
model—in part because they are concerned that increased defaults may be concentrated among 
traditionally underserved groups.239 However, these stakeholders also urge lenders and regulators 
should adopt greater rigor in examining whether and in what circumstances a proposed alterna-
tive offers sufficient performance to warrant adoption.

In this area, some stakeholders have suggested that thresholds and ranges that lenders use for 
general performance testing could potentially be adapted to screen for LDAs, suggesting that such 
metrics can be viewed as defining what range of performance meets the firm’s business needs.240 
For example, if the original model was validated on the basis of a performance variation of +/- 
0.01% of AUC, they argue there is a compelling case that a less discriminatory alternative model 
that has performance within that range and reduces disparities should be adopted.241 Proponents 
suggest that one of the advantages of this approach is that it reflects firm-specific conditions, since 
the level of performance variation that a firm recognizes in model review processes reflects a range 
of business factors including customer base, past performance history, and risk tolerances. However, 
implementing such an approach may be challenging, insofar as firms need to account for the confi-
dence intervals (or the uncertainty level) associated with each option that they identify.242 

A second approach to defining LDAs advanced by a group of consumer advocates and other 
stakeholders puts more emphasis on the role of public oversight.243 They call on the CFPB to conduct 
its own searches for less discriminatory alternatives during fair lending examinations. One proposal 
suggests that the agency should also make public its methodology as a lever to improving and stan-
dardizing industry practice.244 Another proposal focuses on the agency screening machine learning 
models in underwriting, marketing, and collections using a large data set maintained by the agency 
and conducting its own searches for less discriminatory alternative models where lender models 
exceed a designated risk threshold.245 Beyond potential questions about a public sector actor select-
ing a lender’s underwriting models, both proposals may present practical challenges in terms of the 
agency staffing and would require applicable thresholds and standards for generating LDAs. The 
second proposal also raises questions about whether the agency can establish an appropriate data 
set for this purpose and the feasibility of using it to generate alternative specifications for models 
trained on entirely different data. 

Validating Alternative Models Against Other Criteria
Where one or more alternative models have been determined to fall within an acceptable per-

formance range, stakeholders note that lenders must still engage in general validation testing of the 
alternatives and assess other compliance considerations. For example, many stakeholders question 
whether alternative models that offer improved fairness in aggregate but which affect different pro-
tected class groups differently qualify as an LDA.246 In practice, some stakeholders report that such 
conflicts occur with some regularity for individual protected class groups and compound groups. For 
example, an alternative model that produces smaller disparities for Black applicants may produce 
larger disparities for Asian applicants just as reducing disparities for Black men can coincide with 
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increasing them for White women or vice versa. In general, stakeholders report that lenders will not 
adopt a model as a less discriminatory alternative that harms either group.247

Three reports from Relman, Colfax PLCC describe their methodology for assessing disparate 
impact risk in the context of monitoring a fintech lender’s operations, including searching for less 
discriminatory alternative models, and in so doing point to a potential framework for future guid-
ance on this topic.248 The reports set forth several basic assumptions about lenders’ decisions about 
which less discriminatory model to adopt. In general, a viable less discriminatory alternative model 
will produce a meaningful improvement in the relevant fairness metric and will not:

 » Require that the lender accept meaningful reductions in a model’s performance.

 »  Violate other requirements applicable to underwriting models, such as validation criteria 
under prudential model risk management requirements and the firm’s policies.

 » Enhance existing disparities that were present in the original model.

 » Introduce new disparities that were not present in the original model.

 »  Reduce disparities for one protected class group while introducing new adverse effects—
such as reducing the model’s accuracy—for another protected class group.

Further analyses of alternative models are necessary to better understand the specific implications 
of each of these principles and apply them in the context of a lender’s model development processes. 

One advocacy organization has proposed a quantitative approach to identifying LDAs as “a sys-
tematic way of requiring lenders to place fair lending concerns on equal grounds with repayment 
risk.”249 Specifically, the National Community Reinvestment Coalition has proposed that the CFPB 
require lenders to calculate the ratio of each alternative model’s changes in fairness to changes in 
performance. Under this approach, an “accommodation ratio” of 5 means that a one percentage 
point decrease in a model’s predictive accuracy would correspond to a 5% reduction in disparities. 
The organization calls for the agency to require that lenders adopt models with ratios of 2.0 or 
greater and to study whether to set the threshold lower, arguing that “some accommodation should 
be made to preference gains in fairness—even if the new iteration forces lender[s] to make a mod-
est concession to model quality.”250 However, other stakeholders report concern that market-wide 
quantitative standards may not adequately account for variations in market dynamics for firms 
that serve different customer segments or for the populations most affected by decreases in the 
new model’s predictive accuracy.
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7. CONCLUSION
Our research suggests that the thoughtful deployment of evolving explainability and debiasing 

techniques can help to manage concerns about the transparency and fairness of ML underwriting 
models, but that broader evolutions in market practices and public policy are also critical to address 
fundamental questions about our ability to trust more complex models. At this relatively early 
phase when ML technologies and our understanding of them are changing rapidly, defining certain 
basic concepts and expectations could be particularly helpful to encourage responsible use. 

Our empirical analyses found that some post hoc explainability tools produced reliable information 
about various aspects of model operations, but that tool choice, implementation details, and inter-
preting the results in light of the underlying data are important. We found that debiasing techniques 
and other automated approaches produced a range of model alternatives with greater predictive 
accuracy and smaller demographic disparities than traditional fair lending strategies, although lenders 
still face important choices in selecting among alternatives and uncertainty about underlying regu-
latory expectations. More broadly, the fact that the most commonly used explainability techniques 
today cannot directly and precisely map feature interactions within the most complex ML models 
is raising questions across several different regulatory areas about whether it is critical to be able to 
perform such analyses in order to ensure the fair and responsible use of such models. 

In the face of these technical and broader conceptual questions, some lenders and model build-
ers are deploying these new explainability and debiasing techniques in various ways, others are 
primarily emphasizing architectural constraints to produce interpretable ML models, and many are 
choosing not to proceed with ML adoption. However, competitive pressures and tighter and more 
uncertain economic conditions may create stronger incentives to seek greater predictive power, 
thereby increasing the urgency of addressing both technical and broader policy questions about the 
responsible use of machine learning, explainability, and debiasing techniques. 

Publicly available research will be critically important to deepen our understanding of current 
techniques and continuing efforts to produce better tools and approaches. As outlined in Box 7.1, 
topics include the general predictiveness and inclusion effects of machine learning models (particu-
larly in combination with new data sources) as well as additional details about different approaches 
and methods for managing explainability and fairness concerns. 

Conversations and collective learning within and across different stakeholder groups will also 
be critical to building shared understandings about the trustworthy deployment of ML models and 
explainability and debiasing techniques. Dialogue is critical not only across the credit ecosystem, 
but also with other sectors that are also working to manage the deployment of AI/ML models across 
other high-risk use cases.
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BOX 7.1   KEY AREAS FOR ADDITIONAL RESEARCH

Potential topics include:

 »  Further evaluation of the predictiveness, 
inclusion, and fairness effects of using ML 
underwriting models with or without non-
traditional data sources such as cash-flow 
information as compared to traditional 
techniques and data sources. 

 »  Assessing with rigor the transparency costs 
related to the use of more complex machine 
learning underwriting models and the 
benefits and tradeoffs of using up-front 
constraints on model complexity to manage 
transparency and other compliance concerns.

 »  Deeper evaluation of specific implementation 
choices that affect the performance of 
different explainability tools for different 
tasks, such as identifying whether and how 
the definition of the baseline set to which a 
rejected applicant is compared affects the 
quality of information given to consumers on 
an adverse action notice.

 »  Additional analysis of the extent to which 
different explainability tools disagree 
about important factors after accounting 
for correlations to classify the types of 
disagreements that persist and consider 
whether those types of disagreements have a 

material effect on the regulatory compliance 
tasks considered in this evaluation. 

 »  Continuing refinement of assessment 
frameworks for evaluating post hoc 
explainiability tools, including consideration 
of whether different or additional qualities 
can help to identify when information from 
such tools can be trusted and used in high-
stakes contexts.

 »  Deeper evaluation of specific debiasing 
approaches to illuminate the most promising 
methodologies for mitigating bias in machine 
learning underwriting models and the specific 
choices that lenders make when deploying 
those methods, including whether and how 
protected class characteristics (whether 
actual or imputed) can be responsibly used to 
improve the fairness of credit decisions. 

 »  Deeper evaluation of the performance-
fairness tradeoffs identified by debiasing 
tools that generate a range of alternative 
models, for instance to confirm whether 
there is a band in which lenders can improve 
the fairness of models without incurring 
significant loss of performance and how 
potential performance tradeoffs distribute 
across populations of interest.

Even as regulators are continuing to deepen their knowledge of critical issues, there are steps that 
they could take to encourage the development and adoption of responsible implementation practices:

 »  Updating governance frameworks, including potentially articulating the qualities of trust-
worthy AI/ML models similar to the ones described in Section 2.4 could encourage lenders to 
begin methodically evaluating and testing their systems and processes to address those core 
components. Such principles-based approaches can be especially helpful at early stages of 
evolution across diverse stakeholders, markets, circumstances, and technologies.

 »  In a similar vein, articulating the key qualities for explainability and diagnostic tools would 
also help lenders begin to manage for a consistent set of questions and concerns, even as 
the technologies and assessment processes continue to evolve.

 »  Given current variations in whether and how lenders search for less discriminatory alterna-
tives to baseline underwriting models, providing greater clarity on what constitutes an LDA 
and on regulators’ expectations for search processes could significantly increase consistency 
in the market.

The current moment presents both significant risk (as millions of credit applications are being 
decided based on firms’ best judgments as to regulatory compliance and post hoc tool use) and 
significant opportunity (as policymakers have a unique moment in which they can affect the broad 
direction of evolution, before developing more calibrated and binding standards as the innovation 
lifecycle progresses). It also presents an opportunity to re-think and improve upon prior generations 
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of automated underwriting and the extent to which they have left substantial numbers of people 
behind and replicated historical disparities. The coming years could offer the most fundamental 
reset of lending practices in several decades. Whether and to what extent those new systems prior-
itize responsible, fair, and inclusive use of ML models and explainability tools will ultimately depend 
not just on technology issues but on business and policy decisions. Rigorous research, thoughtful 
deployment, and proactive regulatory engagement are critical to ensuring that any new technology 
must ultimately benefit borrowers and financial service providers alike.



69

APPENDIX A 
FinRegLab Policy Working Groups and Advisory Board

FinRegLab convened more than 130 representatives of lenders, banks, fintechs, advocacy orga-
nizations, researchers, and other stakeholders to participate in the Advisory Board and the Policy 
Working Groups for this project. These stakeholders engaged in an extended dialogue about the 
challenges and opportunities of adoption of machine learning techniques in credit underwriting. 
Representatives of several federal and state agencies attended the sessions in an observer capacity. 

This report was informed by the feedback of these and other stakeholders but represents FinRegLab’s 
independent analysis in all respects. It does not necessarily accord with the views of the individual par-
ticipants or their employers.
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Key Terms

Adversarial debiasing: Adversarial models are models that can be used during training to debias 
machine learning models. In this context, adversarial models attempt to predict the protected class 
status of an individual based on the output of the underlying model, with the underlying model 
continuing to adjust until the ability of the adversary to correctly predict protected class character-
istics diminishes to an appropriate point.

Adverse action: An adverse action is a credit decision in which a lender declines to provide credit 
in the amount or terms requested or makes a negative change to an existing account. Federal law 
requires lenders to provide disclosures to consumers and small businesses after taking an adverse 
action to explain the principal reason(s) for the decision.

Alternative financial data: Alternative financial data are a type of credit information that 
describe a variety of non-lending financial activities and can be extracted relatively easily from 
sources such as bank or prepaid card accounts. Depending on the source and scope of data, this 
information may contain more granular and timely information about applicants’ financial position 
than credit bureau information and can provide a more complete picture of an applicant’s ability 
and willingness to repay a loan.

Behavioral data: Behavioral data are a type of credit information firms may use in the context 
of credit underwriting or for other purposes such as marketing. These data include a range of pos-
sible information (such as the date, time, or place of a transaction), digital activities such as search 
histories, or social media data.

Cash-flow data: Cash-flow data are a type of alternative financial data that shows income, 
expenses, and other reserves. Cash-flow data can be derived from bank and prepaid accounts, small 
business accounting software, and other sources.

Conceptual soundness: Conceptual soundness involves an assessment of the quality of a model’s 
design and construction as required by regulatory guidance on model risk governance. Evaluations 
of conceptual soundness ensure that all processes utilized to develop the model are documented 
thoroughly, that such documentation supports how the model operates, and that the choices made 
for the model are themselves supported by analysis and testing. The theoretical construction, key 
assumptions, data, mathematical calculations, and the usage and purpose of the data and model 
must all be documented.

Credit information: Credit reporting agencies provide credit applicants’ personal information; 
public records such as bankruptcies; tradeline data which reflect an applicant’s repayment record 
mainly for secured and unsecured loans; inquiries made on the applicant’s credit files; and balance 
information (including available balance for credit cards) for use in lending and securitization of 
consumer loans.
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Credit scorecard: A credit or underwriting scorecard refers to a method of modeling credit risk 
that converts various characteristics of an applicant’s credit history (such as default history or debt-
to-income ratio) to a point value and then sums these values into a total credit score that signifies 
an applicant’s likelihood of default.

Decision tree: A decision tree is a model that uses a hierarchical structure to estimate a target 
variable with a series of discrete, binary decisions. Beginning with a decision that separates the 
data into two or more subsets, each smaller decision is represented in a chain where each step of 
the chain corresponds to a simple “if-then” decision. This series of analyses eventually leads to an 
estimation of the target variable.

Deployment: Deployment refers to the stage in the model lifecycle when a machine learning under-
writing model is put into use to evaluate applications from consumers and make credit decisions.

Disparate impact: Disparate impact is one of two theories for establishing legal liability for discrim-
ination against groups protected under the Equal Credit Opportunity Act (ECOA) or Fair Housing Act 
(FHA). It prohibits the use of facially neutral practices that have a disproportionately adverse effect 
on protected classes, unless those practices meet a legitimate business need that cannot reasonably 
be achieved through less discriminatory means.

Disparate treatment: Disparate treatment is one of two theories for establishing legal liability 
for discrimination against classes of persons protected under the Equal Credit Opportunity (ECOA) 
Act or Fair Housing Act (FHA). It prohibits treating individuals differently based on a protected char-
acteristic. Establishing disparate treatment does not require any showing that the treatment was 
motivated by prejudice or a conscious intention to discriminate.

Equal Credit Opportunity Act (ECOA): The Equal Credit Opportunity Act of 1974 is a federal stat-
ute (codified at 15 U.S.C. § 1691 et seq.) that makes it unlawful for any creditor to discriminate against 
any applicant, with respect to any aspect of a credit transaction, on the basis of race, color, religion, 
national origin, sex, marital status, or age (provided the applicant has the capacity to contract); to 
the fact that all or part of the applicant’s income derives from a public assistance program; or to 
the fact that the applicant has in good faith exercised any right under the Consumer Credit Protec-
tion Act. ECOA is implemented by the Consumer Financial Protection Bureau through Regulation B 
(codified at 12 C.F.R. Part 1002).

Explainability techniques: Explainability techniques are supplemental models, methods, and 
analyses used to improve the transparency of complex models. Since these tools are used after the 
model has been trained, they are often referred to as post hoc or indirect techniques. These meth-
ods do not generally affect the design or operation of the underlying model and can be used with 
a variety of machine learning model types.

Fair Credit Reporting Act (FCRA): The Fair Credit Reporting Act is a federal statute (codified at 
15 U.S.C. § 1681 et seq.) enacted to protect consumers from the willful and/or negligent inclusion of 
inaccurate information in their credit reports and to promote the accuracy, fairness, and privacy of 
consumer information contained in the files of consumer reporting agencies. FCRA regulates the col-
lection, dissemination, and use of consumer information for credit purposes as well as for activities 
such as employment, insurance, and housing. It is implemented by the Consumer Financial Protection 
Bureau through Regulation V (codified at 12 C.F.R. Part 1022).

Fair Housing Act (FHA): The Fair Housing Act refers to Titles VIII and IX of the Civil Rights Act of 
1968 (codified at 42 U.S.C. § 3601 et seq.), which prohibit discrimination concerning the sale, rental, 
and financing of housing based on race, religion, and national origin. These prohibitions were sub-
sequently extended to include discrimination based on sex, disability status, and family status. The 
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Department of Housing and Urban Development implemented a portion of the FHA through a rule 
prohibiting practices with disparate impact.

Feature: Feature refers to the variables in a dataset used to predict a target variable. This term is 
often used synonymously with input variable or independent variable and represented in mathe-
matical notations as X.

Feature engineering: Feature engineering refers to various methods of preparing data for training 
in order to maximize the accuracy of the model, such as binning numerical variables

Feature importance: Feature importance refers to how much impact an input variable has on the 
target variable in a model. Various post hoc explainability techniques are designed to identify and 
quantify feature importance within more complex models.

Feature selection: Feature selection refers to the process of determining which features in the 
dataset should be used in the machine learning model.

Fitness for use: “Fitness for use” refers to the effectiveness of a model in serving its purpose, which 
can include model accuracy, fairness, and other factors, and the quality of the plan to appropriately 
manage risks related to operation of a particular model. Model risk management expectations require 
firms to determine that a model is fit for use prior to deployment.

Global explanations: Global explanations refer to explanations of a model’s high-level decision- 
making processes and is relevant to evaluating a model’s overall behavior and fitness for use.

Gradient-boosted decision trees (GBDTs): Gradient-boosted decision trees are a form of 
machine learning that combines multiple decision trees, each of whose target variable is the predic-
tion error rate of the tree that came before. The weighted sum of each tree’s predictions gives the 
model’s final prediction.

Hyperparameter: Hyperparameters refer to aspects of a machine learning model that are not 
learned from the data, but rather are determined by model developers, such as the number of 
nodes in a decision tree. Hyperparameters can affect the predictiveness and explainability of the 
model and are often adjusted during model tuning.

Individual Conditional Expectations (ICE) Plots: Individual Conditional Expectation plots are 
common visualization methods used in model development and are used as a feature importance 
explainability technique. These plots provide insight into feature interactions by displaying the rela-
tionship between each individual input and its predicted outcome. ICE plots show each instance or 
person in the dataset as a single line, where the value of the feature of interest varies.

Inherently interpretable models: An inherently interpretable model specifies the contribution 
that each input variable makes toward the output and enables stakeholders to understand its predic-
tions without the use of secondary models, analyses, or methods. These models are also sometimes 
referred to as self-explanatory.

Interpretability: Model interpretability refers to the ability to understand a model’s operations 
based largely on its formal notation and without reliance on secondary models, analyses, or methods. 
To be interpretable, a person should be able to infer the following: (1) the types of information or 
input variables that a model uses, (2) the relationship between the input variables and the model’s 
predictions or outputs; and (3) the data conditions for which the model will return a specific result (for 
example, to receive a credit score of 600, weekly income has to be at least $600).

Latent feature: Latent features are generated by a machine learning algorithm from variables in 
the dataset and serve as internal or interim analyses that help determine the model’s prediction. 
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These can be derived through simple combinations of different features or more complex mathe-
matical processes. In general, the greater the number of the latent features and the more difficult 
those relationships are to describe on their own, the more complex the model will be. 

Linearity: In linear models, changes in a particular input produce a consistent rate of change in 
the output.

Linear regression: Linear regression refers to a statistical technique where a modeler or algorithm 
locates the best-fit linear relationship between input variables and a target variable. 

Local explanations: Local explanations identify the basis for specific decisions made by a model.

Local Interpretable Model-Agnostic Explanations (LIME): LIME is a feature importance 
explainability technique that uses local linear surrogate models around a particular data point 
to approximate a complex model’s output. The resulting local surrogate models are used to both 
explain the model’s behavior around individual data points and quantify feature importance for the 
overall model. LIME is generally used today as a baseline to compare the outputs and performance 
of other explainability tools against or to generate insight into feature importance. 

Logistic regression: Logistic regression refers to a statistical technique where a modeler or algo-
rithm locates the best-fit curve between input variables and a target variable. 

Model debiasing: Model debiasing refers to a range of methods to reduce bias in a model’s pre-
dictions, either by transforming the input data, building a debiasing function into model training, or 
transforming a model’s output. Debiasing techniques vary based on the model’s use case, the data 
being used, model complexity, and other factors.

Monotonicity: Monotonicity refers to a relationship that is one-directional (e.g., increasing the 
value of an input variable will always cause the output to increase or will always cause the output 
to decrease). Imposing monotonicity constraints can help model developers limit the complexity 
and improve the explainability of machine learning models.

Neural network: Neural networks are a form of deep learning that consist of several hidden lay-
ers through which a model learns nonlinear patterns between features and the target variable. The 
model uses these patterns to create new features from the input variables in each layer, ultimately 
arriving at the final layer, where a prediction is made.

Non-financial alternative data: Non-financial alternative data refers broadly to data about a 
person’s activities that are not financial in nature or derived from financial data. Examples of such 
data include social media data, search histories, educational attainment, and mobile phone recharg-
ing habits. 

Overfitting: Overfitting occurs when a model is fitted too narrowly to the training data, which 
can hinder its accuracy when deployed if test or deployment data reflect conditions different than 
those observed in the training data.

Partial Dependence Plots (PDP): Partial dependence plots (PD plots or PDPs) are common visu-
alization methods used in model development and are used as a feature importance explainability 
technique. These plots depict a feature’s effect on a model’s predicted results. PD plots provide a 
global interpretation of more complex models.

Protected class: Like anti-discrimination statutes applicable in other areas, ECOA and FHA prohibit 
discrimination against people based on a common characteristic. Such characteristics include race, 
color, religion, national origin, sex, marital status, disability status, family status, or age (provided 
the applicant has the capacity to contract); reliance on a public assistance program; or the good 
faith exercise of any right under certain federal consumer financial laws. 



Explainability & Fairness in Machine Learning for Credit Underwriting   Policy Analysis
74

Appendix B: Key Terms

Reject inference: Reject inference is an approach used by model developers to address biases that 
result from the absence of loan performance data for past applicants who were rejected or declined 
offers of credit. It uses data for approved applicants to statistically impute predicted values on 
those who were denied credit, which are then added to historical information for approved appli-
cants to train an underwriting model. 

Robustness: Robustness refers to a model’s ability to make accurate predictions in conditions that 
differ from the conditions existent in the model’s training data.

Shapley Additive Explanations (SHAP): Shapley Additive Explanation is a feature importance 
explainability method that is used to explain complex models. SHAP does this by indicating the 
contributions of particular features in changing a model’s outcome. It is similar to LIME in that it can 
provide local explanations. This method measures feature importance by removing features from a 
data point and quantifying how much that affects the model’s output.

Surrogate models: Surrogate models refer to interpretable models that mimic and explain the 
behavior of more complex models.

Target variable: A target variable is the dependent variable or output variable that a machine 
learning model predicts. 

Training: Training refers to the stage in the model lifecycle when a learning algorithm analyzes data 
to identify relationships and rules relevant to predicting a specific target variable.

Training data: Training data refers to the data that is fed into and analyzed by a learning algorithm 
to produce a predictive model. 

Transparency: Model transparency refers to the ability of various stakeholders in a model, includ-
ing its developers, risk managers, and regulators, to access the information they need related to the 
model’s design, use, and performance. Model transparency is generally thought of as being neces-
sary to establish the trustworthiness of models and is important in certain use cases to evaluate 
and document regulatory compliance. Transparency can potentially be achieved through constraints 
that make a model more interpretable, post hoc explainability techniques, or a combination of both.

Extreme Gradient Boosting (XGBoost): Extreme Gradient Boosting is a type of tree-based 
machine learning model that is generated using an open-source package in both R and Python that 
relies on gradient boosting and is popular for use in developing underwriting models. The package has 
been enhanced to expedite the model training process by addressing overfitting risk, removing irrel-
evant information from the model, imputing missing values, and applying explainability techniques.
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APPENDIX C 
Recent Research on Related Topics

This appendix summarizes recent empirical research that is particularly relevant to the issues 
considered in this report. Some of the studies explore activities that may not be required by or 
consistent with existing law or practices–for example by exploring the feasibility of generating 
notices designed to inform applicants of feasible paths to loan approval within a year or exploring 
new approaches to using protected class information to debias models–but may be informative to 
stakeholders in considering options for future evolution. The following research is summarized in 
this section:

 »  The Disagreement Problem in Explainable Machine Learning: A Practitioner’s Perspective, 
Satyapriya Krishna, et al. 

 »  The Input Fallacy, Talia Gillis

 »  The Time is Now: Advancing Fairness in Lending Through Machine Learning, Vitaly Meursault, 
et al.

C.1 The Disagreement Problem in Explainable Machine Learning: A Practitioner’s Perspective
Authors:  Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, 

and Himabindu Lakkaraju

Publishing information: Pre-print May 2023

A team of data scientists qualitatively and quantitatively investigated an increasingly common 
real-world problem: disagreement among multiple post hoc explainability techniques being deployed 
simultaneously to help model developers obtain a richer and more nuanced understanding of model 
behavior. This study used four real-world data sets, a suite of popular “black box” machine learning 
model types, and a set of widely used open source explainability techniques.251 Although one of the 
information sources was a German credit data set, the study did not focus on the production of 
adverse action notices or similar higher-level disclosures to credit applicants,252 but rather on use of 
explainability tools by data scientists. The authors find that in practice disagreements among explain-
ability techniques are common and that model developers often lack a principled framework for 
resolving such disagreements.

Methodology. The authors interviewed data scientists to identify what constitutes a disagreement 
in explanations provided by post hoc explainability methods and formalized their understanding in 
a quantitative framework designed to document and measure the extent of disagreement in expla-
nations by popular explainability methods using a set of new metrics. Alongside their empirical 
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research, the authors conducted an online user study designed to identify whether and how data 
scientists using post hoc explainability methods resolve explanation disagreements.

To conduct the empirical study, the authors trained the following series of models for use with 
tabular data (including German credit data): a logistic regression model, a gradient boosted tree 
mode, a random forest model, and a neural network with 4 hidden layers. The explanation methods 
under evaluation were LIME, KernelShap, and four gradient-based explainability methods.253 

In the qualitative portion of the study, practitioners focused on two considerations in identi-
fying disagreements: (1) the extent to which techniques differ in identifying different top features 
of interest and the signs or directions of contribution of top features and (2) the extent to which 
the techniques differ in the relative ordering of certain features. To measure disagreements across 
various explainability methods, the authors propose six metrics: 

 » Feature agreement: whether the tools identified the same features

 » Rank agreement: whether the tools rank ordered the identified features the same way

 »  Sign agreement: whether the identified key features have the same signs and direction of 
contribution

 »  Signed rank agreement: combines the foregoing to assess whether different tools identify the 
same top features, with same sign and direction of contribution, and in the same order 

 »  Rank correlation: whether tools produce the same feature rankings for a set of features 
identified as particularly important to end users

 »  Pairwise rank agreement: whether different tools rank order the same features in the 
same way (if A is more important than B for one tool, is the same true for another tool?)

Key Findings. The authors find that the explainability techniques “often disagree” when explaining 
the same model. In particular, they find:

 »  As the number of key features considered increases, rank agreement and signed rank agree-
ment generally decrease.

 »  Within the set of gradient-based explainability methods, some groups show strong internal 
consistency but disagree with the others. 

 »  In terms of model complexity, the results on tabular data show greater disagreement among 
explainability tools when applied to neural network models than to a logistic regression 
model. This suggests that the weakness of some explanation strategies—such as LIME’s 
estimation of a simpler model to approximate the “black box”—may cause greater inconsis-
tency in information produced by the various tools. 

Based on surveys of data scientists in academia and different industries, the researchers further 
identify the absence of “principled, well-established approaches” to reconciling those disagreements 
as a particular risk where these tools are used in high stakes contexts. 

Implications and Further Research. The authors cite numerous opportunities for further research, includ-
ing investigation of a systematic way to classify disagreements and their causes, developing relevant 
metrics, and educating practitioners about resolving disagreements. They also point to deeper poten-
tial for refining explainability techniques to avoid certain disagreements.
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C.2 The Input Fallacy
Authors:  Talia B. Gillis

Publishing information: Published April 2022 by the Minnesota Law Review

The author investigates whether new approaches to fair lending testing might better serve 
non-discrimination and inclusion purposes in the context of machine learning underwriting models 
so that gains in predictive accuracy achieved with modern modeling techniques also increase the 
availability of credit for historically disadvantaged groups.254 The author advances two primary 
arguments to this end: (1) machine learning has undermined the efficacy of traditional fair lending 
approaches to managing disparities in underwriting models that focus on addressing fairness con-
siderations via inputs to the credit decision, and (2) the advent of machine learning underwriting 
should enable exploration of new approaches to identifying and mitigating algorithmic discrimina-
tion, including emphasizing the use of empirical testing of algorithmic outcomes.

Methodology. The empirical component of this study consists of a simulation that evaluates the 
effects of three different approaches to managing disparities based on inputs: excluding protected 
class information, excluding proxies for protected class information, and restricting inputs to pre- 
approved features. The author uses the Boston Federal Reserve Bank’s Home Mortgage Disclosure 
Act (HMDA) dataset containing data about residential mortgage loans to develop models for the 
simulation. The author fit a random forest machine learning model and a LASSO regression machine 
learning model on a random sample of 2,000 borrowers with more than 40 variables each to predict 
whether a hypothetical lender would reject an application for credit.255 The author then calibrated 
the models’ rejection rates to publicly available statistics on defaults. 

Key Findings. Tracking the three main approaches to managing disparities based on inputs, this 
study finds the following:

 »  Excluding protected class information: The study questions whether formally excluding 
protected class information is effective from a fairness perspective because machine learn-
ing models can predict applicants’ protected class information with relative accuracy based 
on other inputs. To show this, the author constructs models with additional features from 
the HMDA dataset to predict applicant age and marital status, which are protected charac-
teristics under fair lending law. The model predicting age has an accuracy of 0.84, and the 
model predicting marital status has an accuracy of 0.90.256 

Further, excluding protected class information can actually increase disparities in models 
by failing to account for existing disparities among different demographic groups. To 
demonstrate this, the author constructs two models to predict default rates based on col-
lege attendance. One model is “race blind,” while the other considers race. The model that 
considers race actually produces fewer disparities because it effectively predicts default 
rates based on college attendance within each subgroup, thereby factoring in variations 
in college attendance among White and non-White borrowers. The “race blind” model 
produces greater disparities because it generalizes across the entire population as a single 
group despite the underlying attendance disparities.

 »  Excluding proxies for protected class information: The author argues that excluding vari-
ables that are more closely correlated to protected class status than to the target variable 
(such as default) is similarly ineffective in reducing disparities in machine learning models. 
The author first notes that defining and identifying proxies is difficult in practice. Many 
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credit pricing inputs have a strong correlation with protected class information, and even a 
classic proxy like zip code likely contains information unrelated to protected class member-
ship yet relevant to default risk. Secondly, the author shows that a model with traditional 
credit pricing inputs can better predict an applicant’s race than zip code data—suggesting 
that classic examples of proxies for race, like zip codes, may be less indicative of race than 
other variables widely used by lenders. Next, Gillis constructs a model excluding race and 
its top 10 correlates from its inputs. This model excluding proxies produced less dispari-
ties between White and non-White borrowers than a model just excluding race, although 
non-White borrowers still had much higher credit risk in the proxy-excluding model. She 
therefore contends that excluding characteristics based on their individual correlations to 
protected characteristics is insufficient to ensure fairness in that it does not fully capture 
how variables correlate and interact in machine learning models.

 »  Restricting inputs to pre-approved features: The author compares two random forest 
models, one using the full set of inputs other than race, and another limited to a small 
subset of variables including variables traditionally used in credit pricing (e.g., income, 
debt-income ratio, and characteristics of loans). The model using a small subset of vari-
ables has a lesser disparity between Black and White borrowers, but it has significantly 
worse predictive accuracy as measured with AUC (0.86 vs 0.77). 

Given this, the author argues that restricting credit models to traditional credit pricing 
inputs like income and credit scores risks “entrenching disadvantage”257 in underserved 
groups because lenders using these limited models struggle to price lending risk accu-
rately, and therefore they are likely to increase the price of credit and decrease total 
credit extended. However, Gillis hypothesizes that using additional data, such as payment 
and education data, may mitigate harm from these biased inputs, especially for those in 
underserved groups.

Implications and Future Research. The author theorizes that an outcomes-focused testing method 
might prove a better response to concerns about algorithmic discrimination. Such a regime could 
answer two key questions: whether a model treats borrowers who are similar yet have different 
protected characteristics the same, and whether the model and pricing rule increase or decrease 
disparities compared to some baseline.

C.3 The Time is Now: Advancing Fairness in Lending Through Machine Learning
Authors:  Vitaly Meursault, Daniel Moulton, Larry Santucci, and Nathan Schor

Publishing information:  Federal Reserve Bank of Philadelphia Working Paper 22-39, 
updated June 2023

The authors explore whether the use of machine learning underwriting models and adopting 
group-specific fairness constraints can improve both the fairness and profitability of credit decisions. 
Group-specific fairness constraints set different fairness targets for different groups of applicants. In 
particular, they apply thresholds that treat census tracts that are considered low or moderate income 
(LMI) for Community Reinvestment Act (CRA) purposes258 as underserved.259 Although there is a 
tradeoff between lenders’ profits and fairness in using group-specific thresholds, the authors suggest 
that adopting more sophisticated machine learning underwriting models while applying group-specific 
thresholds for underserved communities can actually increase both fairness and profitability overall.
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Methodology. This study compares the effects of applying group-specific fairness constraints on 
two kinds of models that predict credit scores: a logistic regression model and an eXtreme Gradient 
Boosting (XGBoost) model. Neither model was trained on data containing third-party scores, and 
the former used binned features to approximate pre-machine learning industry practice. The models 
were trained on eight quarters of credit report data in order to predict whether a consumer would 
default in the next two years, with a credit score of zero indicating complete certainty that the con-
sumer will default and a credit score of 100 indicating complete certainty that the consumer will not 
default. These scores were then used to make out-of-sample predictions on another eight quarters of 
data from a random sample of 1% of consumers in the Federal Reserve Bank of New York Consumer 
Credit Panel/Equifax data (CCP) from Q1 2000 to Q4 2019.260 The logit model was 0.007 less accurate 
than the XGBoost model in terms of ROC AUC overall and 0.009 less accurate for LMI tracts.261

The authors created lending thresholds by normalizing the credit scores from the models into 
percentiles decreasing by probability of default and simulating the effects if a hypothetical lender 
chose to lend to consumers with scores above various potential cutoffs. The authors find that when 
all applicants are subject to a single profit-maximizing threshold, creditworthy LMI tract applicants 
are about six percentage points less likely to be correctly classified as creditworthy than non-LMI 
tract applicants by the XGBoost model. A similar difference in predictive power across population 
groups has also been documented by Fuster et al. (2022) and Blattner and Nelson (2021).262

To investigate the effects of group specific thresholds, the authors added a “strong” fairness 
constraint. This constraint equalizes true positive rates (TPR)—the percentage of truly creditworthy 
consumers correctly labeled as creditworthy by the model—among LMI and non-LMI tracts by 
setting different minimum score thresholds for each group. They also applied “medium” and “weak” 
fairness constraints that instead reduce disparities in TPR between LMI and non-LMI tract popula-
tions by 66% and 33%, respectively.263

The paper focuses its reporting of results on fairness-profitability tradeoffs to better situate the 
findings in the context of lenders’ incentives. They assume that each false positive—approvals of 
applicants who are not in fact creditworthy—costs the lender four times what it will earn with each 
performing loan.264

Key Findings. The authors find that improvements in modeling technology improve overall default 
prediction, but the improvements in accuracy affect different groups differently, which is a com-
mon result both in machine learning and in credit scoring more broadly. Both the logistic regression 
and XGBoost models in the evaluation perform better for non-LMI applicants, despite the fact that 
geography and applicants’ race, gender, and other similar characteristics are not considered by the 
model. For example, although geography and proxies for protected class information are absent in 
the models, a creditworthy LMI tract consumer was 6 percentage points less likely to be classified 
as creditworthy by the XGBoost model than a creditworthy non-LMI tract consumer.265

The authors find that using group-specific thresholds to tailor default predictions for LMI popu-
lations can reduce the gap in true positive rates between LMI and non-LMI borrowers, although the 
false positive rate would increase for LMI populations. A strong group-specific fairness constraint—
eliminating entirely the difference in true positive rates for LMI and non-LMI populations—imposes 
the largest cost in the form of false positive increases.

The authors also conduct a pricing analysis and find that, because the XGBoost model predicts a 
lower probability of default than the logistic model for a larger proportion of individuals in the non-
LMI group (68 percent) than the LMI group (61 percent), the non-LMI tract borrowers are expected 
to benefit more in terms of loan pricing from ML model adoption. However, the XGBoost model 
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would slightly reduce prices overall for both groups—a finding that contrasts with findings from 
Fuster et al. (2022) that ML adoption can slightly increase mortgage prices for minorities.266 Fairness 
constraints also only have a minor effect on pricing in the study.

The authors find a potential win-win scenario by considering what happens when lenders shift 
from logistic regression models to XGBoost models and apply group-specific thresholds. A lender 
applying a group-specific threshold in the absence of a significant improvement in model quality 
would reduce its profitability. However, a lender using more sophisticated models with group-spe-
cific thresholds can increase both the fairness and profitability of credit decisions. For example, an 
XGBoost model used with a strong fairness constraint generates more profit for the lender than 
does a logistic model without fairness constraints—that is, the increase in profitability from using 
machine learning models more than makes up for any additional losses associated with equalizing 
true positive for LMI and non-LMI borrowers.267

Implications and Future Research. The authors contend that machine learning when used with 
group-specific fairness constraints can simultaneously improve the fairness and profitability of 
credit decisions. Notwithstanding legal doubt about the use of group-specific thresholds under 
the ECOA,268 the “special purpose credit programs” sanctioned by that statute may be an attractive 
vehicle for implementing and learning more about this approach.
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Endnotes
1  For simplicity, this paper uses “underwriting” as a broad term that generally includes predictive models and processes used to help make 

decisions about loan approvals, pricing, and credit limits. 

2  Large language and image recognition models are leveraging “big data” across the Internet to enable content generation, raising substantial 
questions about accuracy, reliability, bias, intellectual property, and other topics. For further discussion of the differences between these 
and ML underwriting models, see Box 2.1.2.

3  Consumer Financial Protection Bureau, Data Point, Credit Invisibles 4-6, 17 (2015); Mike Hepinstall et al., Financial Inclusion and Access to 
Credit, Oliver Wyman (2022). See Section 2.2.1 and Section 2.2.2.

4  FinRegLab, The Use of Machine Learning for Credit Underwriting: Market & Data Science Context §§ 1, 2.2, 3 (2021) (hereinafter FinRegLab, 
Machine Learning Market & Data Science Context).

5  We define transparency as the ability of various stakeholders to access information they need related to a model’s design, use, and 
performance. Some use terms such as interpretability or explainability to express similar concepts. See Section 2.3; FinRegLab, Machine 
Learning Market & Data Science Context §§ 2-3 & Appendix A.

6  FinRegLab, Machine Learning Market & Data Science Context §§ 3 and 5. We use the term “regulatory” in this report to include supervisory 
expectations that are established through guidance as well to specific legal requirements that are established by regulation.

7  FinRegLab, Machine Learning Market & Data Science Context; FinRegLab, Laura Blattner, & Jann Spiess, Machine Learning Explainability 
& Fairness: Insights from Consumer Lending (updated June 2023) (hereinafter FinRegLab et al., Empirical White Paper); FinRegLab, 
Explainability & Fairness in Machine Learning for Credit Underwriting: Policy and Empirical Findings Overview (2023).

8  Logistic regression is a statistical technique that is frequently used to predict a binary (or categorical) dependent variable based on one 
or more independent variables (e.g., default/not default), while linear regressions are frequently used to predict numeric (or continuous) 
dependent variables (e.g., time to repayment or default). Both generally assume linear, monotonic relationships among the relevant 
variables, as discussed further below. For discussion of these and other techniques, see World Bank Group & International Committee 
on Credit Reporting, Credit Scoring Approaches Guidelines (2019). For additional background on the historical transition to automated 
systems and ongoing concerns, see FinRegLab, The Use of Cash-Flow Data for Credit Underwriting: Market Context & Policy Analysis § 2 
(2020) (hereinafter FinRegLab, Cash-Flow Market Context & Policy Analysis).

9  Board of Governors of the Federal Reserve System, Report to Congress on Credit Scoring and Its Effects on the Availability and Affordability 
of Credit, S-2 to S-4 and O-2 to O-4 (2007), 32-49; Allen N. Berger & W. Scott Frame, Small Business Credit Scoring and Credit Availability, 
47 J. of Small Bus. Mgmt., 5-22 (2007); Susan Wharton Gates et al., Automated Underwriting in Mortgage Lending: Good News for the 
Underserved?, 13 Housing Policy Debate 369-391 (2002). 

10  Consumer Financial Protection Bureau, Data Point, Credit Invisibles, 4-6 and 17; Hepinstall et al.; see also Oportun, Response to Agencies’ 
Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, Including Machine Learning, 2 (July 1, 2021) 
(estimating based on internal analyses that 55 million consumers with limited credit histories may be mis-scored); Laura Blattner & Scott 
Nelson, How Costly Is Noise? Data and Disparities in Consumer Credit (June 2022) (finding that the risk of errors in predicting default risk 
appears to be higher for consumers with relatively thin credit files).

11 See our description of “overfitting” in Appendix B.

12  Additional information on non-traditional data sources can be found in past FinRegLab reports. See, e.g., FinRegLab, Cash-Flow Market 
Context & Policy Analysis.

13  Scorecards separately assess risk for different segments of the overall applicant population, such as consumers with little credit history 
or those with a substantial history of delinquent payments. Stacking or ensemble models involve the use of submodels to generate more 
complex features that are then used as inputs in a final underwriting model. See, e.g., Leo Breiman, Stacked Regressions, 24 Machine 
Learning 49 (1996). Some pricing models may also predict other factors than default, such as the likelihood that an applicant will revolve 
balances or pay off a loan early. FinRegLab, Machine Learning Market & Data Science Context §§ 2.4 and 4.3.2.

14  We use the term “feature” to refer to the variables in a dataset used to predict a target variable (such as default). This term is often used 
synonymously with input variable or independent variable.

15  For more detailed discussions of applicable regulatory frameworks, see FinRegLab, Cash-Flow Market Context & Policy Analysis, Appendix 
B and Sections 4-6 below.

16  Other firms use machine learning techniques in a more limited way during feature engineering and selection, where they apply the 
techniques to large datasets to identify particular features or feature relationships that they then use in logistic regression models. This 
tends to provide less predictive power but may be easier to manage for other purposes. FinRegLab, Machine Learning Market & Data 
Science Context, 23-24.

17  Tree-based models use a hierarchical structure of “if-then” nodes to generate predictions of the likelihood of default. For example, an 
initial node might separate consumers based on whether they had previously filed for bankruptcy, and then subsequent nodes on each 
branch would further separate the relevant group based on current balances or other criteria. XGBoost methods generate multiple 
tree-based models, each of which are based on the prediction error of the prior model, and then create a final prediction based on the 
weighted average of the prior models. This is more complex than a single decision tree but leads to lower prediction error rates and better 
predictive power. FinRegLab, Machine Learning Market & Data Science Context § 4.1.2.1.1.
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18  Neural networks take the initial input features and then generate one or more rounds of “latent features” that help to improve predictions 
of default risk. This structure can boost the predictiveness of the models compared to other machine learning techniques, in part because 
it can help to identify relationships that are non-linear and non-monotonic in the data as described in note 19 and accompanying text. 
FinRegLab, Machine Learning Market & Data Science Context § 4.1.2.1.3.

19  The use of salt in cooking illustrates both concepts. The first increment of salt added to a dish may improve the flavor by a different 
amount than the second increment, and at some point, additional increments will start to make the dish taste worse. Such a relationship 
is neither linear nor monotonic.

20  The presence of highly correlated features increases the variance of regression coefficients. This complicates the task of assessing the 
statistical and economic significance of features’ influence on the regression’s dependent variable (e.g., default risk). For this reason, some 
stakeholders choose to use scorecards and other model structures besides regression to deal with correlations.

21  See, e.g., Financial Stability Board, Artificial Intelligence and Machine Learning in Financial Ser-vices (2017); Ting Huang et al., The History of 
Artificial Intelligence, University of Washington (2006); Arthur L. Samuel, Some Studies in Machine Learning Using the Game of Checkers, 
3 IBM J. of Research & Development 211-229 (1959); Tom Mitchell, Machine Learning (1997); Michael Jordan & Tom Mitchell, Machine 
Learning: Trends, Perspectives, and Prospects, 349 Science 255-260 (2015).

22  For a discussion of generative AI adoption in the financial services industry, see Melissa Koide, Written Testimony on “Artificial Intelligence 
in Financial Services” to the Senate Committee on Banking, Housing, and Urban Affairs (2023) § 3.b. The content creation process in 
generative AI relies on models that predict words or images based on patterns learned in large amounts of sequential data. For instance, 
auto-fill functions are a low-level version of generative AI that predict the most likely letters or phrases that follow the initial content. See 
Mark Riedl, A Very Gentle Introduction to Large Language Models without the Hype, Medium (2023).

23  See generally Aylin Caliskan, Detecting and Mitigating Bias in Natural Language Processing, Brookings Institution (2021); Prepare for Truly 
Useful Large Language Models, Editorial, 7 Na-ture Biomedical Engineering 85-86 (2023); The Politics of AI: ChatGPT and Political Bias, 
Jeremy Baum & John Villasenor, Brookings Institution (2023); Yogesh K. Dwivedi et al., So what if ChatGPT wrote it? Multidisciplinary 
Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy, 71 
International Journal of Information Management (2023); Shira Ovide, Your Selfies Are Helping AI Learn. You Did Not Consent to This, 
Washington Post (Dec. 9, 2022).

24  The Executive Order encourages the Director of the CFPB to evaluate underwriting models for “bias or disparities affecting protected 
groups” and issue additional guidance on fairness considerations regarding the advertising of credit. United States, Executive Office of the 
President [Joseph Biden], Executive Order 14110: Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, 88 Federal 
Register 75191 (November 1, 2023).

25  Several studies have found significant predictive accuracy gains in moving from incumbent logistic regression models to machine learning 
models in lending contexts. See, e.g., Niklas Bussmann et al., Explainable Machine Learning in Credit Risk Management, 57 Computational 
Economics 203-216 (2021); Eilif de Lange et al., Explainable AI for Credit Assessment of Banks, 15 Journal of Risk and Financial Management 
556 (2022); Joao A. Bastos & Sara M. Matos, Explainable Models of Credit Losses, 301-1 European Journal of Operational Research 386-
394 (2022); Andrés Alonso & José Manuel Carbó, Understanding the Performance of Machine Learning Models to Predict Credit Default: 
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classification problems, or Mean Squared Error (MSE) for regression problems, among others.

81  Office of the Comptroller of the Currency, Comptroller’s Handbook, Model Risk Management: Version 1.0 (2021), 40.

82  See, e.g., National Institute of Standards and Technology, NIST AI Risk Management Framework Playbook (2023); U.S. Chamber of 
Commerce Technology Engagement Center, Comment on Artificial Intelligence Risk Management Framework Request for Information to 
NIST (Sept. 15, 2021).

83  Office of the Comptroller of the Currency et al., Request for Information on Financial Institutions’ Use of Artificial Intelligence, Including 
Machine Learning, 86 Fed. Reg. 16,837 (Mar. 31, 2021). 

84  See, e.g., FRB, SR 11-7 at 3 (“The use of models invariably presents model risk, which is the potential for adverse consequences from 
decisions based on incorrect or misused model outputs and reports. Model risk can lead to financial loss, poor business and strategic 
decision making, or damage to a bank’s reputation.”).

85  Congress adopted fair lending laws in the 1960s and 1970s and some privacy and information security requirements for consumer financial 
data in 1999. For a detailed discussion of these regimes and their administration, see Financial Health Network, Flourish Ventures, FinRegLab 
& Mitchell Sandler, Consumer Financial Data: Legal and Regulatory Landscape §§ 3 and 6 (2020). Guidance issued by the Consumer 
Financial Protection Bureau in 2022 indicating that discrimination in the provision of non-credit consumer financial products and services 
may constitute an unfair act or practice is being challenged in federal court. Consumer Financial Protection Bureau, CFPB Targets Unfair 
Discrimination in Consumer Finance, Press Release (March 16, 2022); Chamber of Commerce vs. Consumer Financial Protection Bureau, No. 
6:22-cv-00381, Opinion and Order (E.D. Tex. Sept. 8, 2023). 

86  A number of private sources such as consultant organizations and vendors have suggested lists of principles for financial services. See, e.g., 
Mohan Jayaraman et al., Responsible by Design: Five Principles for Generative AI in Financial Services, Bain & Co. (July 21, 2023); Usama 
Fayyad, Responsible AI: A Mandate in Finance and Insurance, Forbes Technology Council (July 6, 2023); Daragh Morrissey & Nick Lewins, 
Microsoft’s Perspective on Responsible AI in Financial Services (2019).

87  See, e.g., FICO & Corinium, State of Responsible AI in Financial Services (2023); MIT Technology Review Insights & JPMorgan Chase & 
Co., Deploying a Multidisciplinary Strategy with Embedded Responsible AI (Feb. 14, 2023); Daragh Morrissey & Nick Lewins, Responsible 
AI in Financial Services: Governance & Risk Management (2019); see also Anand Rao & Bret Greenstein, 2022 PwC AI Business Survey 
(reporting results of broader survey on adoption of responsible AI components across multiple sectors); Elizabeth M. Renieris et al., To Be 
a Responsible AI Leader, Be Responsible, MIT Sloan Management Review & BCG (Sept. 19, 2022) (same). 

88  See, e.g., Scott Zoldi, AI Governance: How Blockchain Can Build Accountability and Trust, EnterpriseAI News (Dec. 1, 2022).

89  Intuitive justifications are often based on firm experience and broader economic or behavioral theories. Pace, Model Risk Management in 
the Age of AI, 9-10.



Explainability & Fairness in Machine Learning for Credit Underwriting   Policy Analysis
86

Endnotes
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Machine Learning.
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likely to rely on vendor-provided models and tools for underwriting specifically, they may also encounter vendor-management challenges 
for other types of ML applications, such as fraud and use of automated valuation models.

111  For more context, see FinRegLab, Machine Learning Market & Data Science Context § 3.5.

112  See Pace, Model Risk Management in the Age of AI, 35.
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113  See, e.g., Office of the Comptroller of the Currency, Comptroller’s Handbook, Model Risk Management, 29.

114  The use of open-source tools as the basis of many proprietary offerings or on their own can help address verifiability concerns but may 
introduce other broader concerns and risks. See, e.g., Alex Engler, How Open-Source Software Shapes AI Policy, The Brookings Institution (2021); 
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121  15 U.S.C. § 1691(d)(6); 12 CFR § 1002.9.
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156  CFPB, Tech Sprint on Electronic Disclosures of Adverse Action Notices.

157  FinRegLab et al., Empirical White Paper § 4.7.

158  For more about factors affecting the efficacy of legal disclosures, see George Loewenstein et al., Disclosure: Psychology Changes 
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See Box 6.1.1.1. for further discussion.
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167  15 U.S.C. § 1961(a) (prohibiting discrimination on the basis of race, color, national origin, religion, sex, marital status, or age or because of 
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169  Overt discrimination is sometimes broken out as a third category, distinct from disparate treatment. CFPB, Examination Procedures, 
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Housing Act and that overt discrimination and disparate treatment are covered by ECOA, it has not yet ruled on whether disparate impact 
analysis applies under ECOA. Texas Dep’t of Housing & Community Affairs v. Inclusive Communities Project, Inc., 576 U.S. 519 (2015). Federal 
regulations, agency guidance, and lower court decisions have recognized the doctrine under ECOA for decades, in part based on legislative 
history. See, e.g., 12 C.F.R. § 1002.6(a); 12 C.F.R. Pt. 1002, Supp. I, sec. 1002.6, para. 6(a)-2. The Supreme Court has recognized the disparate 
impact theory under the Fair Housing Act but not yet ruled on its status under the Equal Credit Opportunity Act. For a general overview 
of disparate treatment and disparate impact and the ways that they overlap, see Carol A. Evans, Keeping Fintech Fair: Thinking About Fair 
Lending and UDAP Risks, Consumer Compliance Outlook 1-9 (Second Issue 2017).

170  The first concept is sometimes described in data science contexts as fairness through unawareness, and the second as conditional sta-
tistical parity.

171  In data science, this option is often referred to as demographic or statistical parity.

172  In data science, predictive parity and equalized odds are two commonly used measures to evaluate the distribution of different types of 
predictive errors.

173  See generally Jon Kleinberg et al., Inherent Trade-Offs in the Fair Determination of Risk Scores, Innovations in Theoretical Computer 
Science Conference (2017); see also Nicholas Schmidt & Bryce Stephens, An Introduction to Artificial Intelligence and Solutions to the 
Problems of Algorithmic Discrimination (Nov. 8, 2019), arXiv:1911.05755. However, new research has shown that fairness along multiple 
criteria can be achieved if one allows a small margin of error in fairness metrics. See Andrew Bell et al., The Possibility of Fairness: Revisiting 
the Impossibility Theorem in Practice, arXiv:2302.06347 (2023).

174  FinRegLab, Machine Learning Market & Data Science Context § 5.

175  See, e.g., National Consumer Law Center, Past Imperfect.

176  Nicol Turner Lee & Samantha Lai, The U.S. Can Improve Its AI Governance Strategy by Addressing Online Biases (2022); Barocas & Selbst, 
684-687; Talia B. Gillis, The Input Fallacy, 106 Minn. L. Rev. (2022), 1192-1197. However, the latter approach would likely require Congressional 
action and would raise tension with recent Supreme Court opinions on consideration of demographic information in college admissions. 
Students for Fair Admissions, Inc. v. President & Fellows of Harvard College, 600 U.S. __ (2023).

177  See FinRegLab, Cash-Flow Market Context & Policy Analysis, Box 4.1.2.1.

178  Federal law does allow lenders to consider factors such as whether an applicant is of sufficient age to form binding contracts under state 
law and whether state laws regarding marital property affect their ability to repossess collateral. 15 U.S.C. § 1691(b). Models can also use 
applicants’ age as a predictive variable under narrowly restricted circumstances involving “an empirically derived, demonstrably and 
statistically sound, credit scoring system” if the model does not assign a negative value to the age of older applicants. 15 U.S.C. § 1691(b)
(3); 12 C.F.R. § 1002.6(b)(2). 

179  12 C.F.R. §1002.5. Congress has created two major exceptions to the general rule for residential mortgages under the Home Mortgage 
Disclosure Act of 1975 and for small business loans under ECOA, although the latter is still being implemented. 12 U.S.C. §§ 2801-2811; 88 Fed. 
Reg. 35150 (May 31, 2023). In some circumstances, protected class data may be collected and used subject to the requirements of special 
purpose credit programs. 12 C.F.R. §1002.5(a)(3).

180  Special purpose credit programs address the needs of individuals who would otherwise be declined credit or offered credit on less 
favorable terms without the program. In this situation, creditors may be permitted to obtain information that would otherwise be 
prohibited. For example, if financial need is a criterion of a special purpose program targeting low-to-moderate-income households, 
the creditor could review information concerning the marital status of the applicant, such as alimony payments, child support, and the 
spouse’s income. See 12 C.F.R. § 1002.8.

181  As discussed in note 169, the Supreme Court has recognized the disparate impact theory under the Fair Housing Act but not yet ruled on 
its status under the Equal Credit Opportunity Act. For a general overview of disparate treatment and disparate impact and the ways that 
they overlap, see Carol A. Evans, Keeping Fintech Fair: Thinking About Fair Lending and UDAP Risks, Consumer Compliance Outlook 1-9 
(Second Issue 2017). 
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also Patrice Alexander Ficklin, Fair Notice on Fair Lending, Consumer Finance Protection Bureau (2012); Department of Housing & Urban 
Development et al., Policy Statement on Discrimination in Lending, 59 Fed. Reg. 18,266 (Apr. 15, 1994).
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sample sizes). See also 12 C.F.R. Pt. 1002, Supp. I, sec. 1002.6, para. 6(a)-2; see also Office of the Comptroller of the Currency, Credit Scoring 
Models: Examination Guidance, Bulletin 1997-24 (May 20, 1997) (focusing on whether credit scoring variables are statistically related to loan 
performance and have an understandable relationship to creditworthiness).

185  Practice Law Finance, CFPB Clarifies Duty to Perform Fairness Testing on Lending Models, Westlaw Today (Apr. 23, 2023); Brad Blower, CFPB 
Puts Lenders & FinTechs on Notice: Their Models Must Search for Less Discriminatory Alternatives or Face Fair Lending Non-Compliance 
Risk, National Community Reinvestment Coalition Blog (Apr. 5, 2023). 
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Richardson, NCRC’s HMDA 2018 methodology: How to calculate race and ethnicity (2019).

187  Consumer Financial Protection Bureau, Using Publicly Available Information to Proxy for Unidentified Race and Ethnicity (2014); Marc N. 
Elliott et al., A New Method for Estimating Race/Ethnicity and Associated Disparities Where Administrative Records Lack Self-Reported 
Race/Ethnicity, 43 Health Services Research 1722-1736 (Sept. 2008); Robert Letzler, Ryan Sandler, Ania Jaroszewicz, Isaac Knowles, & Luke M. 
Olson, Knowing When to Quit: Default Choices, Demographics and Fraud, 127 Econ. J. 2617–2640 (Dec. 2017); Blattner & Nelson, How Costly 
Is Noise?. Specifically, each applicant in the model development data set is assigned a separate probability that he or she is in a particular 
demographic category. These probabilities can later be used to aggregate summary outcomes. For example, when using a continuous BISG 
probability methodology, if the applicant is 80% likely to be Black, and 20% likely to be Asian American or Pacific Islander, and that applicant 
was approved under a proportional method of estimation the approval would count as 0.8 of a Black approval and 0.2 of an AAPI approval. 
In other instances, thresholds may be used. If the threshold was 70%, in this example it would be counted as a Black approval only.

188  CFPB, Using Publicly Available Information to Proxy for Unidentified Race and Ethnicity; Arthur P. Baines & Marsha J. Courchane, Fair 
Lending: Implications for the Indirect Auto Finance Market, Charles River Associates (2014); Kasey Matthews, Improving This Algorithm Can 
Make Lending A Lot Less Racist, Zest AI (2020); Richard Pace, Blog, BISG Proxy Bias Redux: The Impact of the 2020 U.S. Census Data, Pace 
Analytics Consulting LLC (Aug. 8, 2023).

189  Smaller firms may have difficulty attracting and maintaining equal levels of expertise to their modeling and compliance teams. As a 
result, model developers and statisticians from business units may provide limited support for certain compliance activities and may have 
limited access to protected class information in the course of implementing less discriminatory alternatives.

190  See Evans, Keeping Fintech Fair.

191  Firms use varied statistical measures, such as Pearson correlation, to test for correlations when applying this test.

192  See, e.g., Relman Colfax, Upstart Second Report,24-30. 

193  For a general overview of statistical testing for disparate impact, see Charles River Associates, What Is Disparate Impact Testing? (2023).

194  Schmidt & Stephens, An Introduction to Artificial Intelligence and Solutions to the Problems of Algorithmic Discrimination (adverse impact 
ratio is “a common measure of disparate impact”); Patrick Hall et al., A United States Fair Lending Perspective on Machine Learning, Front. 
Artif. Intell. (2021) (“Other techniques, such as the Adverse Impact Ratio (AIR) and the standardized mean difference (SMD, which is also 
known as “Cohen’s d”), which have a long history of use in employment discrimination analyses, can also be used for measuring disparate 
impact in lending”).

195  In practice, this can be challenging at the model testing phase, since it is not always clear at the model development stage what the 
approval thresholds will be, and the model is often only one component of the underwriting decision. Further, changes to all of these 
factors can occur once the model is deployed.

196  Practical significance concepts are also used as a defense in disparate treatment cases where there is statistical significance in the finding 
that race or gender played a role, but the sample size, slightness of the significance, or other factors arguably indicate that the findings 
were not the result of (intentional) discrimination. See, e.g., Kevin Tobia, Disparate Statistics, 126-8 The Yale Law Journal 2260-2449 (2017).

197  See, e.g., 44 Fed. Reg. 11996 (1979); see also 12 C.F.R. Pt. 1002, Supp. I, sec. 1002.6, para. 6(a)-2; see also Office of the Comptroller of the 
Currency, Credit Scoring Models: Examination Guidance, Bulletin 1997-24 (May 20, 1997) (focusing on whether credit scoring variables are 
statistically related to loan performance and have an understandable relationship to creditworthiness).

198  In effect, these steps also serve to evaluate the strength of the relationship between the features or practices and default risk or other 
legitimate business needs, which is the second component of disparate impact analysis. Similar processes may be used to search for 
alternative features to replace inputs that could be viewed as impermissible proxies under disparate treatment if dropping the features 
substantially reduces model performance.

https://files.consumerfinance.gov/f/documents/cfpb_supervision-and-examination-manual_ecoa-baseline-exam-procedures_2019-04.pdf
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199  As noted above, manual feature reviews during initial model development are based on general institutional knowledge, since the 
developers do not have access to protected class information.

200  Some firms, especially smaller ones, only conduct fair lending testing after a model has been put into use.

201  As noted in Box 6.1.1.1, a range of debiasing techniques can be applied at different times, for instance by transforming the input data, 
building a debiasing function into model training, or transforming a model’s output. The machine learning debiasing methods discussed 
here involve building a debiasing function into model training, which is sometimes called “in-processing.” In-processing techniques are 
the most relevant in the lending context because they (1) may withstand disparate treatment scrutiny in that, unlike post-processing 
techniques, they use protected class information in model training rather than to transform model predictions directly and (2) can 
typically manage any potential fairness-accuracy tradeoff in LDA search with more precision and efficiency than pre-processing 
methods. For additional detail about sources of bias and mitigation approaches, see FinRegLab, Market & Data Science Report. 

202  See generally Gilles Louppe, Michael Kagan, & Kyle Cranmer, Learning to Pivot with Adversarial Networks (2017).

203  For more on historical bias and its importance, see Box 2.1.1 and National Consumer Law Center.

204  See Gabbrielle M. Johnson, Proxies Aren’t Intentional, They’re Intentional (2021), 2-4 (unpublished manuscript) (arguing that machine 
learning algorithms have the capacity to “learn,” be “aware” of, and make decisions on the basis of protected class characteristics by 
picking up on redundant encoding in the data and using proxies to meaningfully reason about or explicitly represent protected class 
characteristics, even when those characteristics are not available or provided as model inputs); see also Gillis, The Input Fallacy.

205  The discussion excludes doctrinal fair lending without specific implications for the fair and responsible use of machine learning 
underwriting models, such as what constitutes a legitimate business need in the second prong of the disparate impact evaluation. Those 
include efforts to recognize considerations beyond default risk as a legitimate business need and to clarify whether the model needs to 
be the best predictor of default risk to constitute a legitimate business need.

206  See, e.g., Scott Zoldi, Blog, Fighting Bias: How Interpretable Latent Features Remove Bias in Neural Networks, fico.com (Oct. 27, 2021).

207  See Section 2.3.2 for discussion of surrogate models such as LIME, which create simpler and more explainable models that are designed 
to approximate the full machine learning model.

208  If the group of features under investigation does not contribute to the performance of either of the separate models, then there is 
additional basis for concluding that the impact of these features is attributable to correlations with protected class characteristics. See 
Relman Colfax, Upstart Second Report at 24-30; Relman Colfax PLLC, Fair Lending Monitorship of Upstart Network’s Lending Model: 
Third Report of the Independent Monitor (2022), 30-36 (hereinafter Relman Colfax, Upstart Third Report). 

209  Relman Colfax, Upstart Second Report, 25. See also Section 2.3.2.

210 See Appendix C for a more complete summary of the method-ology and findings of this re-search.

211 Gillis, 1220-1230. HMDA information contains actual demo-graphics. Id. 1258-1259.

212  Id., 1232-1235. Figure 6 shows the two distributions of predicted risk. The author notes that using fewer inputs may account for some of 
the disparity between these distributions. The author does not report performance metrics for these models to help contextualize the 
importance of these differences.

213 Id. 1240-1241.

214  Specifically, the study used zip code tabulation areas that are generated by the U.S. Census to account for situations in which zip codes 
do not follow the borders of census tracts, block groups, or other jurisdictional boundaries. Id. 1225-1226.

215 Id. 

216 Id. 1223-1224.

217 Id. 1237 and 1245-1256.

218  Schmidt & Stephens (adverse impact ratio is “a common measure of disparate impact”); Hall et al., A United States Fair Lending Perspective 
on Machine Learning (“Other techniques, such as the Adverse Impact Ratio (AIR) and the standardized mean difference (SMD, which is 
also known as “Cohen’s d”), which have a long history of use in employment discrimination analyses, can also be used for measuring 
disparate impact in lending”).

219  See Richard Pace, Fool’s Gold? Assessing the Case for Algorithmic De-Biasing (2021), Pace Analytics Consulting LLC (discussing outcome-
based fairness metrics in light of MRM and ability-to-repay requirements).

220  See generally FinRegLab, Machine Learning Market & Data Science Context § 5.2.1 and Appendix C; Deborah Hellman, Measuring Algorithmic 
Fairness, 108 Virginia Law Review 811-866 (2020). In addition to limitations on collecting and using data on protected class, another 
challenge is assessing model accuracy with regard to applicants who are rejected or simply do not take out a loan. Some information can 
be purchased by reporting agencies or imputed by various statistical methods, but such options are subject to various constraints. 

221  See Upstart, Response to Agencies’ Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, 17-19.

222  Examples include area under the receiver operating characteristics curve (AUC), which is a common performance metric for classification 
problems like default risk estimation, and Kolmogorov-Smirnov (KS), which refers to the separation between the positive and negative 
distributions on Kolmogorov-Smirnov charts.
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223  Depending on data availability, other options might include using underlying default rates to compare the percentage of true positives (i.e., 
the number of approved applicants who in fact repay their loans) across groups and subgroups, or comparing the ratio of false positives 
(approved applicants who fail to repay) to false negatives (rejected applicants who could have repaid) within different demographic 
groups. See Hellman Part III.

224  Pace, Fool’s Gold; Hellman, Measuring Algorithmic Fairness. As described in Appendix C.3, one study by researchers at the Federal Reserve 
Bank of Philadelphia assessed  the implications of setting different approval thresholds in different geographies to ensure that a lender 
accepts the same percentage of truly creditworthy applicants in each area (“true positive rate”), despite evidence that traditional credit 
report information tends to be more sparse and noisy for residents of low- to moderate-income neighborhoods. The study found that 
the differentiated thresholds would also tend to increase the approvals of “false positives” who are not likely to repay the loan, but that 
those losses could potentially be offset by greater predictive accuracy from ML models. See Meursault et al.

225  As noted in Section 6.1.1, some stakeholders are looking beyond questions about debiasing strategies to question whether direct use of 
protected class information in making credit decisions would actually result in fairer outcomes, particularly in connection with machine 
learning models. However, such approaches would likely require Congressional action and would raise tension with recent Supreme Court 
opinions on consideration of demographic information in college admissions. Students for Fair Admissions, Inc. v. President & Fellows of 
Harvard College, 600 U.S. __ (2023).

226 For further discussion, see FinRegLab et al., Empirical White Paper § 5.7.2.

227  See Gillis, 1222-1230.

228  Areas for research could also include the effect of using imputed protected class information rather than actual protected class information 
in the model development process.

229  In selecting among alternatives, lenders are still subject to general model risk management requirements for banks (including conceptual 
soundness analyses) and federal consumer protection regulations that require all credit card and mortgage lenders to assess borrowers’ 
ability to repay. See Pace, Fool’s Gold, Point 1; Section 6.2.2.3 regarding the definition of less discriminatory alternatives.

230  Part of this may be due to resource limitations and risk calculations where incumbent models are not changing significantly over time. 
Lenders are also divided over whether documentation of searches for LDAs will help to defend their models from potential criticisms or 
whether regulators and plaintiffs’ attorneys will draw adverse inferences from records about alternate models that were not ultimately 
selected. Zest AI, Why ZAML Makes Your ML Platform Better (2019).

231  Practice Law Finance, CFPB Clarifies Duty to Perform Fairness Testing on Lending Models; Brad Blower, CFPB Puts Lenders & FinTechs 
on Notice.

232  Joint Letter from NCRC, Zest and Upturn calling on CFPB To Encourage Lenders to Look for Less Discriminatory Alternatives (2022); National 
Fair Housing Alliance, Response to Request for Information on the Equal Credit Opportunity Act and Regulation B (2020), 6-7 (calls on the 
CFPB to “inform financial institutions that they are expected to conduct a rigorous LDA search as part of a robust compliance management 
system, and to advance the policy goals of furthering financial inclusion and racial equity”); National Community Reinvestment Coalition, 
Comment on the CFPB’s RFI on the Equal Credit Opportunity Act (2020).

233  A recent application of this approach used the following standards for practical significance: APR disparities were deemed practically 
significant where SMD was greater than 0.30 (where a higher SMD means greater disparities), and approval/denial disparity were deemed 
practically significant where AIR less than 0.90 (where a lower AIR means greater disparities). See Relman Colfax, Upstart Third Report at 8.

234  Relman Colfax, Upstart Third Report at 12 (citing Jones v. City of Bos., 752 F.3d 38, 52 (1st Cir. 2014): “[A practical significance standard] may 
serve important needs in guiding the exercise of agency discretion, or in serving as a helpful rule of thumb for [institutions] not wanting 
to perform more expansive statistical examinations.”)

235  Id. at 7-9 and 11-12.

236  Relman Colfax, Upstart Second Report at 14-15.

237  12 C.F.R. 1002.1(b); see also Public Law 93-495, tit. V, § 502, 88 Stat. 1500, 1521 (1974); see also 86 Fed. Reg. 56356, 56371 (CFPB Small Business 
Data Collection Proposed Rule); Consumer Financial Protection Bureau, Supervision and Examination Manual: Equal Credit Opportunity 
Act Baseline Modules; see also 12 C.F.R. 1002.1(a) (“The purpose of this part is to promote the availability of credit to all creditworthy 
applicants without regard to race, color, religion, national origin, sex, marital status, or age (provided the applicant has the capacity 
to contract); to the fact that all or part of the applicant’s income derives from a public assistance program; or to the fact that the 
applicant has in good faith exercised any right under the Consumer Credit Protection Act. The regulation prohibits creditor practices that 
discriminate on the basis of any of these factors”).

238  Federal Agencies, Interagency Fair Lending Examination Procedures (2009), 27 (emphasis added). Guidance on credit scoring systems also 
contemplates some performance variation in less discriminatory models that might be required for adoption: if “the business necessity 
can be achieved by substituting a comparably predictive variable that will allow the credit scoring system to continue to be validated, 
but also operate with a less discriminatory result.” See Office of the Comptroller of the Currency, Credit Scoring Models: Examination 
Guidance, Bulletin 1997-24 (May 20, 1997), Appendix page 11 (emphasis added); see also Federal Housing Finance Agency, AB 2021-04 (2021).

239  Some stakeholders point out that this assumption may not be correct with regard to models that are not only predicting default but also 
predicting likelihood of prepayment or other outcomes. In such models, changes in performance may fall just as much or more on the 
group affected because of prepayment risk. See generally Relman Colfax, Upstart Third Report at 26-27.

240  See generally id., 12-23. For example, if a developer sees that a particular iteration results in a performance deterioration of more than a 
designated percentage when compared to the results of the prior iteration in the same test, firm policy may preclude acceptance of the 

https://www.occ.treas.gov/news-issuances/bulletins/1997/bulletin-1997-24.html
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model with lower performance and direct the developer to focus instead on the prior iteration. In addition, once a model is submitted for 
validation and testing against out-of-time data samples, its performance is often described not by a single numerical target, but rather 
by a target level of performance with some probability of variation. 

241  Id., 17.

242  Within a confidence interval, performance at levels that are further away from the original model’s “expected” performance are 
progressively less likely to be observed. Lenders factor in these probabilities in defining what range is acceptable. Accordingly, an 
alternative model with an “expected” performance at the lower bound of the confidence interval has a much higher probability of 
actually obtaining the lower level of performance. 

243  NCRC, Comment on the CFPB’s RFI on the Equal Credit Opportunity Act, question 9; Michael Akinwumi et al., An AI Fair Lending Policy 
Agenda for the Federal Financial Regulators, Brookings Institution (2021).

244  Akinwumi et al.

245  NCRC, Comment on the CFPB’s RFI on the Equal Credit Opportunity Act, Question 9.

246  Relatedly, as most fairness metrics and debiasing techniques consider only one protected class at a time, without evaluating effects on 
intersectional subgroups (e.g., categories along the axes of both race and gender such as Black women). Techniques to better evaluate 
and mitigate these disparities are a promising avenue of future research. See Michael Kearns et al., Preventing Fairness Gerrymandering: 
Auditing and learning for Subgroup Fairness, Proceedings of the 35th International Conference on Machine Learning (2018).

247  One possible exception relates to a scenario in which one group’s AIR is above the relevant threshold for both the initial model and the 
alternative model candidate, but the latter has an AIR closer to the threshold. In this case, reducing the amount by which the group’s AIR 
exceeds the threshold will not generally be seen as a practically significant harm if the alternative model candidate also improves AIR for 
the second group under consideration. By contrast, if the AIR for both groups is below the relevant threshold for the initial model, the 
alternative model candidate will likely be rejected if it improves AIR for one group but decreases it for another.

248  See generally Relman Colfax, Upstart Third Report, 10-30.

249  NCRC, Comment on the CFPB’s RFI on the Equal Credit Opportunity Act, question 9.

250  The concept of working across a fairness-accuracy frontier is well established across the broader machine learning literature. See, e.g., Kit 
T. Rodolfa, Hemank Lamba, & Rayid Ghani, Empirical observation of negligible fairness–accuracy trade-offs in machine learning for public 
policy, 3 Nature Machine Intelligence 896-904 (2021).

251  Although the study considered text and image processing models, this summary primarily focuses on the study’s finding as to models 
classifying tabular data given their particular relevance to machine learning underwriting models.

252  For example, the authors did not evaluate the effect of aggregating explainability tool outputs into higher-level explanations. See Section 
5 for further discussion.

253  These gradient-based methods are Vanilla Gradient, Gradient times Input, Integrated Gradients, and SmoothGrad, and they were only 
tested on the neural network and logistic regression models.

254  This summary focuses primarily on the paper’s empirical component. In addition, the author surveys how machine learning underwriting 
models can increase and decrease disparities; how certain kinds of data inputs can introduce disparities; and current legal and regulatory 
requirements.

255  The 40 variables include more types of variables than mortgage originators typically use in traditional lending, though it does not include 
nontraditional data being considered in some forms of lending. See Section 2.2.3.

256  Gillis assessed area under the receiver operating characteristics curve (“AUC”), which is a common performance metric for classification 
problems like default risk estimation.

257  Gillis, 1238.

258  In keeping with CRA practice, the authors classify LMI census tracts as those with a median income less than 80% of its metropolitan 
statistical area or metropolitan division income (MSA/MD). For tracts outside of MSA/MD, the authors use statewide income.

259  While there is uncertainty about whether group-specific thresholds are permitted under fair housing laws, the paper discusses special 
purpose credit programs as a possible pathway for implementing such thresholds for LMI and non-LMI tracts. Meursault et al., 44-46; 
note 180. For a discussion of whether other group-specific approaches to addressing accuracy disparities may be legally permissible, 
see Hellman.

260  The CCP is an anonymized, consumer-level dataset of quarterly credit bureau records for a five percent, nationally representative random 
sample of individuals with a credit file. The authors also use demographic data from the U.S. Census Bureau to determine the CRA status 
of consumers in their sample of the CCP dataset based on the income of the consumer’s census tract. The sample excluded consumers 
that are currently at least 90 days delinquent in keeping with industry practice.

261  Meursault et al, 47.

262  Meursault et al., 5.

263  Meursault et al., 24-25.

264  Meursault et al., 20-21.
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265  Meursault et al., Figure 3.

266  Pricing is assumed to be a function of default risk in the analysis by Meursault et al. See Meursault et al., 38-39.

267  See Meursault et al., Figures 5-6 and pages 25-27. 

268  See Gillis, 1196-1204 and Hellman, Part III.
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