As a step toward improving the ability to identify and manage the harmful effects of bias in artificial intelligence (AI) systems, researchers at the National Institute of Standards and Technology (NIST) recommend widening the scope of where we look for the source of these biases — beyond the machine learning processes and data used to train AI software to the broader societal factors that influence how technology is developed. The recommendation is a core message of this revised NIST publication, which reflects public comments the agency received on its draft version released last summer. As part of a larger effort to support the development of trustworthy and responsible AI, the document offers guidance connected to the AI Risk Management Framework that NIST is developing.
This white paper outlines some of the most important considerations for managing risk in machine learning models to create more accurate and compliant algorithms. Key recommendations include focusing on the quality of input data as well as implementing techniques to reduce and expose bias.