FinRegLab is extending its investigation of the adoption of artificial intelligence in financial services through a policy analysis focused on the growing use of machine learning models for underwriting credit and a January 17 webinar with senior federal financial regulators to discuss generative AI and other recent developments.
FinRegLab and Professors Laura Blattner and Jann Spiess of the Stanford Graduate School of Business have released new research on “Machine Learning Explainability and Fairness: Insights from Consumer Lending.”
FinRegLab, in partnership with the U.S. Department of Commerce, the National Institute of Standards and Technology (NIST), and the Stanford Institute for Human-Centered Artificial Intelligence (HAI), are hosting a symposium, bringing together leaders from government, industry, civil society, and academia to explore potential opportunities and challenges posed by artificial intelligence and machine learning deployment across different economic sectors, with a particular focus on financial services and healthcare.
Machine learning models are being used to evaluate the creditworthiness of tens of thousands of consumers and small business owners each week in the U.S., increasing the urgency of answering key questions about their performance, governance, and regulation.
FinRegLab is working with researchers from Stanford Graduate School of Business to launch a ground-breaking evaluation of emerging market practices to improve the transparency and fairness of machine learning underwriting models in consumer credit.