FinRegLab Events
Machine Learning Explained: Evidence on the Explainability and Fairness of Machine Learning Credit Models
Virtual Conference April 28, 2022
FinRegLab hosted a virtual conference in April 2022 featuring research being conducted by FinRegLab and Professors Laura Blattner and Jann Spiess of the Stanford Graduate School of Business on the use of machine learning in credit underwriting, with a particular focus on their potential implications for explainability and fairness.
Machine learning models are drawing increased attention in credit underwriting because of their potential for greater accuracy and, particularly when combined with new data sources, greater financial inclusion. But because the models can be more complicated to analyze and manage, model transparency has become a critical threshold question for both lenders and regulators. The research empirically evaluates the performance and capabilities of currently available tools designed to help lenders develop, monitor, and manage machine learning underwriting models.
Additionally, the conference featured specific panels with subject matter experts and academics on fairness and explainability. The panels explored how tools designed to help lenders explain and manage ML underwriting models can help foster responsible use of complex models to make decisions with high stakes for consumers, firms, and communities.
Welcoming Remarks
Speaker
Presentation of Research Q&A
The initial panel included a presentation summarizing the research team’s recent white paper, “Machine Learning Explainability & Fairness: Insights from Consumer Lending,” which evaluates seven proprietary tools as well as several open-source diagnostic methods to understand how their outputs could potentially help lenders in generating individualized consumer disclosures and fair lending compliance. The panel also included discussion by respondents and questions by audience members.
Speakers
Panel 1 – Explainability
The complexity of models derived by AI/ML algorithms poses fundamental challenges for oversight: How can we gain sufficient insight into how a model makes predictions in order for model users and their regulators to enable oversight and governance? The panel discussed debates over the use of inherently interpretable underwriting models as compared to post hoc diagnostic tools. The panel also considered which explainability challenges and limitations will most likely be the focus for practitioners over the next decade.
Speakers
Panel 2 – Fairness
Serious questions exist about the ability of lenders to deploy machine learning underwriting models that meet anti-discrimination and equity expectations. The panel discussed concerns that the use of machine learning underwriting models will increase fair lending risks. Panel members also discussed specific approaches to improving the fairness of underwriting models, such as defining a framework for making fairness-performance tradeoffs and prospects for adversarial debiasing.
Speakers
Related Publications
-
Explainability & Fairness in Machine Learning for Credit Underwriting: Policy Analysis
This policy analysis explores the regulatory and public policy implications of the increasing use of machine learning models and explainability and fairness techniques for credit underwriting in depth, particularly for model risk management, consumer disclosures, and fair lending compliance.
-
Explainability & Fairness in Machine Learning for Credit Underwriting: Policy & Empirical Findings Overview
This paper summarizes the machine learning project’s key empirical research findings and discusses the regulatory and public policy implications to be considered with the increasing use of machine learning models and explainability and fairness techniques.
-
Machine Learning Explainability & Fairness: Insights from Consumer Lending
This empirical white paper assesses the capabilities and limitations of available model diagnostic tools in helping lenders manage machine learning underwriting models. It focuses on the tools’ production of information relevant to adverse action, fair lending, and model risk management requirements.
-
The Use of Machine Learning for Credit Underwriting: Market & Data Science Context
This report surveys market practice with respect to the use of machine learning underwriting models and provides an overview of the current questions, debates, and regulatory frameworks that are shaping adoption and use.
-
AI FAQS: The Data Science of Explainability
This fourth edition of our FAQs focuses on emerging techniques to explain complex models and builds on prior FAQs that covered the use of AI in financial services and the importance of model transparency and explainability in the context of machine learning credit underwriting models.
-
Explainability and Fairness in Machine Learning for Credit Underwriting
FinRegLab worked with a team of researchers from the Stanford Graduate School of Business to evaluate the explainability and fairness of machine learning for credit underwriting. We focused on measuring the ability of currently available model diagnostic tools to provide information about the performance and capabilities of machine learning underwriting models. This research helps stakeholders… Learn More
About FinRegLab
FinRegLab is an independent, nonprofit organization that conducts research and experiments with new technologies and data to drive the financial sector toward a safe and responsible marketplace. The organization also facilitates discourse across the financial ecosystem to inform public policy and market practices. To receive periodic updates on the latest research, subscribe to FRL’s newsletter and visit www.finreglab.org. Follow FinRegLab on LinkedIn.
FinRegLab.org | 1701 K Street Northwest, Suite 1150, Washington, DC 20006